建設の機械化

日本建設機械化協会

カトー HD-400 SE
全油圧式ショベル
株式会社 加藤製作所
マルゼン・ハイネス・アースドリル

マルゼンハイネスアースドリルは、米国ハイネス社との提携により発売された乾式打設の製品です。
・小型・軽量・操作が簡単。従来のボータブルアースドリルでは考えられない驚異的な性能を有します。
・操作は一人で楽に扱えます。
・性能 深さ：総穴7mまで、横穴：14mまで
穴径：38φ～400φまで
・用途 建柱、支柱の穴掘りに
フェンス、柵の穴掘りに
植樹、造園士木の穴掘りに
水道、ガス管の埋設工事の横穴に
道路横断のパイプ埋設に
その他土付の穴掘りなら全て御利用出来ます。

丸善工業株式会社
本社 静岡県三島市長倉155-8番地
TEL 0558-77-2140
営業所 札幌・仙台・三島・大阪・福岡

時代の要請にこたえた
東京流機の純国産全油圧式クローラドリル

全油圧式クローラドリル
CDHー950
CDHー850

空圧式クローラドリル
CDー2L
CDー310
CDー610
CDー710
CDー8

ダウンホール
&ロータリードリル
Tー4
DMー45

東京流機製造株式会社
本社・工場 神奈川県相模原市北区50ー1
横浜支店 東京都港区北浜1丁目3番2号
名古屋支店 名古屋市中村区中村3ー4ー3(名古屋ビル)

東京流機株式会社
目次

□岩頭 肇 上越新幹線の開業を迎えて 吉村 恒／1
□昭和57年度官公庁の事業概要（7） 松本 弘幸／3

通商産業省電源開発事業の概要 岩本敏雄／7

上越新幹線建設の施工技術の回顧 梶原雄／13

回転工法によるトラス橋の架設 本尾文／18

ESG処理による線路下横断路通路の施工 辰巳 隆／25

御坊火力発電所人工島埋立工事の実績 岩本 暁／33

グラビア——御坊火力発電所人工島埋立工事

土圧バランス式シールド機による 松田 幸雄／39

急曲線掘進の実例——下本道管渠構築工事 田村 伸／61

島の高架橋における大口径リバース杭の施工 井川 秀／52

直線道路工事の切手 尾崎 隆／54

ロータリーニットクリアシリンダシステムによる 本川 伸／61

小断面トンネルの吹付工法 石村 伸／64

北陸の砂防事業にかかる建設機械の開発 松本 幸雄／67

油圧式トラッククリーンの操作装置における 田村 伸／63

築造操作要因の調査結果とその対策試案 井川 秀／63

ISO/TC127,SC2 デビューニ会議報告 岩本 晃／66

騒音対策型機械構造の対象機械 瀬野文/70

□新製品・新製品 調査会／73

□文献調査

330tジャッキアップしたプラットフォーム／荒れる海に橋をかける／パイバー強化コンクリートは空港舗装に効果があることが実証された 文献調査委員会／70

□整備技術

建設機械の再生。オーバーホール、再組立についての評価 整備技術会／73

□調査

建設工事受注額・建設機械受注額・建設機械卸売価格の推移 調査会／77

行事一覧 調査会／76

編集後記 (古橋・松島)/80

* * *

主な諸元

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>設計値</th>
<th>実測値</th>
</tr>
</thead>
<tbody>
<tr>
<td>パラメータ</td>
<td>0.33m</td>
<td>0.36m</td>
</tr>
<tr>
<td>最大揚量</td>
<td>300kg</td>
<td>290kg</td>
</tr>
<tr>
<td>最大揚量補助力</td>
<td>100kg</td>
<td>95kg</td>
</tr>
<tr>
<td>パラメータ</td>
<td>4.5m</td>
<td>4.5m</td>
</tr>
<tr>
<td>最大揚量補助力</td>
<td>70kg</td>
<td>65kg</td>
</tr>
<tr>
<td>パラメータ</td>
<td>100kg</td>
<td>105kg</td>
</tr>
<tr>
<td>全長</td>
<td>11kg</td>
<td>12kg</td>
</tr>
</tbody>
</table>
昭和57年度 映画会「最近の機械施工」の開催

第4回目の映画会を下記のとおり開催致しますので、観覧を希望される方は当日会場にご参集下さい。入場無料ですが、収容人数（250名）に制限がありますので、ご用意好む場合、電話にて事務局にお知らせ下さい。

1. 日時 11月18日（木）午後1時30分～午後5時
2. 場所 機械振興会館「地下2階ホール」（東京都港区芝公園3-5-8）
3. 上映映画
 「南北築港築堤の海底掘削工事」（昭54）
 「新・東京湾海底トンネル」（昭55）
 「岩盤に挑む―三沢工事（シールド工法）」（昭56）
 「岩盤に挑む―三沢工事（シールド工法）」（昭57）
 「新・東京湾海底トンネル」（昭58）
 「獲え物を追う―北総連絡橋工事」（昭59）
 「新・東京湾海底トンネル」（昭60）
 「新・東京湾海底トンネル」（昭61）
 「新・東京湾海底トンネル」（昭62）

【予 告】

1. 日時 12月17日（金）午後1時15分～午後4時45分
2. 場所 機械振興会館「地下2階ホール」
3. 上映映画
 「港を運ぶ―深層導水路」（昭56）
 「SSY式掛工法」（昭56）
 「岩盤に挑む（シールド工法）」（昭57）
 「岩盤に挑む（シールド工法）」（昭57）
 「岩盤に挑む（シールド工法）」（昭57）

1月21日（金）東京港トンネル、シールド工法（その歴史と現状）
2月18日（金）津軽海峡を越え、すすむシールド工法、地下工事計測システム、明日の課題、OCWW工法、PLS工法、高架橋の迅速施工

事務局

社団法人 日本建設機械化協会
〒105 東京都港区芝公園3-5-8（機械振興会館内）
電話 東京（03）433-1501
昭和57年度 除雪機械展示・実演会（米沢）の開催

1. 主催 社団法人 日本建設機械化協会
2. 日時 昭和58年1月26日（水）午前10時～午後4時
 1月27日（木）午前9時30分～午後3時
3. 場所 米沢市東2丁目・松川河川敷（市有地・サッカー場）
4. 関係 先 社団法人 日本建設機械化協会

部 〒105 東京都港区芝公園3-5-8（機械振興会館内）
電話 東京（03）433-1501

東北支部 〒980 仙台市山上町3-10-21（徳和ビル内）
電話 仙台（022）22-3915

なお、建設省主催の「除雪研究会」が同期間内に下記のとおり開催される予定です。詳細はご案内致します。

期 日 昭和58年1月27日（木）
開催場所 市民文化会館（米沢市中央1-10-11）

昭和57年度（第28回）海外建設機械化視察団員募集について

1. 期日 昭和58年4月4日（月）出国
 4月17日（日）帰国 ……14日間
2. 訪問国 オランダ、西ドイツ、スイス、フランス
3. 専門視察
 (1) バラマ 83（20TH INTERNATIONAL TRADE FAIR）
 (2) 工事現場
 (3) 新幹線試乗
4. 赴切日 昭和58年1月31日（月）
5. 関合先 社団法人 日本建設機械化協会

〒105 東京都港区芝公園3-5-8（機械振興会館内）
電話 東京（03）433-1501
昭和 57 年度施工技術報告会

主 題
「建設工事における近接施工作の技術」

共 催
社団法人 日本建設機械化協会関西支部
社団法人 土木学会関西支部
社団法人 土木学会関西支部

三学・協会では、直接設計、施工に携わった方々に施工技術の成果を報告していただきます施工技術報告会を毎年企画しております。過去6回における当報告会には、官公庁、公社団体、建築業、コンサルタントをはじめ広範囲の多くの中間者に参加いただき、好評をいただいております。

本年度は、第7回目として「建設工事における近接施工作の技術」をテーマに、第一線で活躍しておられる各位より報告していただきます。近年、既設の構造物と近接して行われる工事が多く、都市部のみならず全国各地で施工されております。こうした難工事に対して施工法の改善、開発をはじめ計画、解析技術を含んだ幅広い技術が集約され施工されており、さらに今後検討すべき課題も多いと指摘されております。

本報告会は、相互学発表会に向けて大きく役立つことと思いますので、ふるって多数ご参加くださいますようご案内いたします。

記

1. 日 時 昭和 58年1月26日（水）9:30〜16:55
2. 場 所 大阪科学技術センター（8階大ホール） 電話 大阪（06）443-5321
大阪市西区食道4丁目3番4号（地下鉄御堂筋線「本町」下車、北へ150m、細路公園近く）

3. 題目と講師
9:30〜9:30 開会挨拶 ・・・・・・・・・・・・・・・・・・・・・・・・・・（社）土木学会関西支部長 村瀬 清
9:30〜10:15 ①大口堰シールド法の適用に伴う鋼管接合のアンダービニング
工事【大阪市下水道天王寺〜下天神線における施工例】
大阪市下水道局建設部技術監兼工務課長 北村 正夫
近畿日本建設（株）名古屋営業所長 古永 騎男
（株）大林組中水道工事事務所長 *伊藤 住吉
（株）大林組中水道工事事務所・藤田 進

10:15〜11:00 ②既設断面構造物を基礎として共同溝下越し構造の仮設工
法について
建設省近畿地方建設局大規模工事事務所建設監督官 山本 勝史
建設省近畿地方建設局大規模工事事務所通資課長 兼守 茂也
西松建設（株）尼崎西作業所長 中西 満吉
西松建設（株）足島西作業所長 吉田 利三

11:00〜11:45 ③トンネル駅部大断面建設工事における近接工
（国鉄福知山線新鹿児島〜武田尾トンネル工事の施工例）
日本国有鉄道大阪工事局総局第一課長　中島 順雄

日本国有鉄道大阪工事局道後工事区部長　勝田 守

西鉄建設（株）宝塚出張所長　伊藤 利一

12月15日13時00分　④鉄道高架工事における取付部の施工

東京電気鉄道（株）京都市内線工事部課長　山村 隆保

13時30分～14時15分　⑤下水道シールド工事における近接施工例

東京都下水道局建設部 藤本 定雄

東京都下水道局計画部　高橋 良文

日本工営（株）土木部部長　川田 孝治

日本工営（株）土木部　吉田 哲

14時15分～15時00分　⑥南港新幹線盛土に近接する大規模掘削

大阪府北部義務下水道事務所工務課長　日野 栄一

大阪府北部義務下水道事務所工務係長　池田 穴

大阪府北部義務下水道事務所技術部　大谷 広行

大阪港湾開発・開基建設・日産建設共同企業体所長　岸田 和男

大阪港湾開発・開基建設・日産建設共同企業体土木主任　大井田 剛

（社）大阪港本店土木第一部設計課　加西田 俊照

15時15分～16時00分　⑦近接山崩れ杭の持材引抜工法

（ベントネル電気付着膜による持材引抜工法）

（株）竹中工務店技術研究所主任研究員　斎藤 勝彦

（株）竹中工務店技術研究所研究員　内崎 篤

（株）竹中工務店大阪本店技術部課長　高橋 正明

（株）竹中工務店大阪本店技術部　今井 崇史

16時00分～16時45分　⑧鉄道橋台通過に伴うシールド工事と補助工事

（城東共同溝シールド工事における施工例）

建築省近畿地方建設局大阪国道工事事務所共同講課長　田中 軍司

（株）熊谷組大阪支店土木部 前田 純一

16時45分～16時55分　閉会挨拶…………（社）日本建設機械化協会関西支部　井 昭治郎

4. 定員　300名（先着順）

5. 参加費

会員 3,500円（講演概要（B5判オフセット印刷）を含む）

非会員 5,500円

6. 申込期限　昭和58年1月11日（火）必着

7. 申込方法　参加ご希望の方は、申込書に必要事項をご記入のうえ、参加費を添えて下記へお申込みください。参加証をお送りいたします。なお、納入された参加費の払戻しはいたしませんのでご了承ください。

申込先

社団法人日本建設機械化協会関西支部
〒540 大阪市東区谷町1-50（大手前建設会館内）
電話 大阪（06）941-8845
機関誌編集委員会

<table>
<thead>
<tr>
<th>委員長</th>
<th>渡辺 和夫</th>
<th>本協会連絡幹事長</th>
</tr>
</thead>
<tbody>
<tr>
<td>編集委員長</td>
<td>浦边和夫</td>
<td>本協会連絡幹事長</td>
</tr>
</tbody>
</table>

編集委員

<table>
<thead>
<tr>
<th>委員</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>坂口 貴司</td>
<td>本協会広報部委員</td>
<td></td>
</tr>
<tr>
<td>酒井 水</td>
<td>本協会広報部委員</td>
<td></td>
</tr>
<tr>
<td>松本 幸雄</td>
<td>本協会広報部委員</td>
<td></td>
</tr>
<tr>
<td>吉田 由治</td>
<td>本協会広報部委員</td>
<td></td>
</tr>
<tr>
<td>古橋 正雄</td>
<td>日本国有鉄道建設局建築課</td>
<td></td>
</tr>
<tr>
<td>飯田 威夫</td>
<td>日本鉄道建設公団技術部機械課</td>
<td></td>
</tr>
<tr>
<td>岩本 賢</td>
<td>日本道路公団東京第一建設局 建設第二部構造技術課</td>
<td></td>
</tr>
<tr>
<td>天野 篤夫</td>
<td>首都高速道路公団神奈川建設局</td>
<td></td>
</tr>
<tr>
<td>黒田 満徳</td>
<td>本州四国連絡橋工事第二部設務課</td>
<td></td>
</tr>
<tr>
<td>長田 忠良</td>
<td>水資源開発公社第一工務部機械課</td>
<td></td>
</tr>
<tr>
<td>高橋 大</td>
<td>電源開発(株)土木部</td>
<td></td>
</tr>
<tr>
<td>林 宏</td>
<td>日立建機(株)クリーン技術部</td>
<td></td>
</tr>
<tr>
<td>田辺 法夫</td>
<td>(株)小松製作所 工業技術本部技術管理部</td>
<td></td>
</tr>
<tr>
<td>佐藤 進</td>
<td>八千代エンジニアリング(株)取締役</td>
<td></td>
</tr>
<tr>
<td>石川 正夫</td>
<td>佐藤工業(株) 本営業本部営業部長</td>
<td></td>
</tr>
<tr>
<td>神部 篤男</td>
<td>ハザナ興業(株)取締役社長</td>
<td></td>
</tr>
<tr>
<td>石川 康夫</td>
<td>(株)トネック建設部社長</td>
<td></td>
</tr>
<tr>
<td>齋藤 昭雄</td>
<td>(株)大林組技術研究所次長</td>
<td></td>
</tr>
<tr>
<td>大脇 堅</td>
<td>東亜建設工業(株)顧問</td>
<td></td>
</tr>
<tr>
<td>両角 常美</td>
<td>(株)神戸製鋼所 建設機械事業部事業部長</td>
<td></td>
</tr>
<tr>
<td>塩原 重美</td>
<td>(株)鹿島建設(株)技術研究所次長</td>
<td></td>
</tr>
</tbody>
</table>

顧問

<table>
<thead>
<tr>
<th>委員</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>加藤 輝次</td>
<td>本協会会長</td>
<td></td>
</tr>
<tr>
<td>長尾 満</td>
<td>新構造技術(株)取締役会長</td>
<td></td>
</tr>
<tr>
<td>坂本 賢</td>
<td>本協会専務理事</td>
<td></td>
</tr>
<tr>
<td>浅井 新一郎</td>
<td>新日本製鐵(株)顧問</td>
<td></td>
</tr>
<tr>
<td>上田 広民</td>
<td>本協会建設機械化研究所長</td>
<td></td>
</tr>
<tr>
<td>中野 俊次</td>
<td>本協会常務理事</td>
<td></td>
</tr>
<tr>
<td>新聞 範治</td>
<td>(株)西島製作所技術部担当部長</td>
<td></td>
</tr>
<tr>
<td>桑垣 喜夫</td>
<td>久保田工機(株)理事</td>
<td></td>
</tr>
<tr>
<td>田中 康之</td>
<td>元機関誌編集委員</td>
<td></td>
</tr>
</tbody>
</table>

顧問委員

<table>
<thead>
<tr>
<th>委員</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
巻頭言

上越新幹線の開業を迎えて

吉村 恒

この11月15日から、上越新幹線大宮〜新潟間270kmは、いよいよお客様を乗せて関東と越後を結び、野越え山越え疾走しはじめることとなった。願わくは、我々が多年心血を注いで造ったこの新幹線が、円滑に運行を続け、今後永きにわたって国民の皆様に御愛用いただけるよう、心から願うものである。

本年6月には、東北新幹線大宮〜盛岡間500kmが上越新幹線より一足先に仮開業し、少なくともこの一夏に関する限り東北ブームといわれる程の御好評をいただいたことは、誠に喜ばしいことである。上越新幹線についても是非同様であってほしい、一人でも多く利用していただきたく願うのは、永らく開業を待望されて工事に御協力を賜った沿線の方々も、工事に従事した我々も同様であろう。特に私の場合、この東北、上越の両方の新幹線に深くかかわってきたので、ひとりこの感が強い。どうぞ皆さん、乗ってやって下さい。沿線には風光、酒、人情等々、良い所がいっぱいありますから。

顧みれば、この新幹線が着工したのは昭和46年秋、実施計画の認可を得て勇躍各工区逐次発注になり、爾来今日まで11年。5〜6年で区間別に完成させてきた従来の新幹線に比べれば、異例の長期を要したことになる。

この間には第1次オイルショックによる経済事情の激変と公共投資の抑制などがあり、あるいは環境意識の尖鋭期とあって、地元協議の難航や数々の反対運動にさらされる等、決して平穏な道程ではなかった。特に、着工時は昭和40年代の高度経済成長期の真中で、高速鉄道7,000kmを作って国土の普遍的開発を図るという趣旨の「全国新幹線鉄道整備法」の新制定第1号という中でスタートしたが、今日までの間に、鉄道輸送は他の自動車、航空機の発達に押されて、昔日の面影を失うに至っており、経営に当る国鉄の財政状態も正に破算的様相に変わってきている。新幹線の当初計画も、今日の情勢を予測しておらず、ある面では過大設備のそしみをまぬがれ難い点もある。時勢の移るところ己むを得ぬことではあるが、一旦動き出したプロジェクトの各部分を手直しして、情勢の大きな変化に追随することは、至難というか、まず不可能といってもよく、この点、この種事業の計画に当っての難しさが痛感されるところである。

このように、上越新幹線は東北と共に難産の末、世に生え出た線路ではあるが、東北が東
建設の機械化 ’82.11

巻頭言

海，山陽と共に本州の太平洋岸にあって，国土の骨組を形成するのに対し，これと直角に首都圏から分岐して，絶壁山脈を貫いて日本海沿岸に出る，いわば肋骨状の初開の路線である。
大宮～新潟間 1 時間 45 分という時間距離の短縮化，新潟は極秘，北は秋田，山形から両富山，石川に及ぶ日本海沿岸地方に，新しい時代をもたらし，国の経済社会発展に大きく寄与するものと考えられる。

建設工事としての上越新幹線は多くの特色を有するが，中でも全長の 40％がトンネルであり，その中で絶壁山脈を貫く大清水トンネル（22.3 km）は，陸上トンネルとしては世界一の巨大トンネルである。また棟梁，中山の両トンネルは共に延長約 15 km，かなりの長大さの他，地質名称上は凝灰角礁岩とはいうものの，実質は火山柱近くに積る未固結火山灰，しかも多量かつ高圧の地下水を含む地層群に悩まされた。中でも中山トンネルは，たて坑工法での突発法から 2 度の水没事故に見舞われ，辛い人命事故は免れたものの，地上と坑内両方からの莫大な既存線に，トンネル内本線ルートの変更といった非常措置を講じ，なお，東北にさらばる 5 ヶ月の開業の遅れを生ずる結果となった。中山トンネルは，この種の難工事の中でもその典型として，今後も語り継がれるものとなるだろう。また，上毛高原駅以北，特に大清水トンネルを出た湯沢駅以北の新潟県下では，最大積雪深が 4 m を超える世界でも有数の豪雪地帯である。この雪はまた上越新幹線にとってはスキー客等の重要な需要源でもあり，この雪の中での高速運行の確保のためには，多くの研究の末，35 節所に滑雪基地を設け，加湿した水をスプリンクラーによって降雪強度に応じて撒き，人工的な無雪状態を造るという構想を採用している。

東北，上越新幹線の後，いわゆる整備 5 東の中から東北の盛岡～青森間，北陸新幹線の東北の二つが，折からの行革調和あるいは新幹線の需要の発展が示す，強い新幹線整備促進の声をうけて，環境アセスメント等の準備が進められている。一方，外国では，昨秋フランス国鉄は TGV による 200 km/hr 営業を開始し，他にも西独をはじめ高速列車建築を進めている幾つかの国がある。わが国の新幹線も創始者の名声を辱めぬよう今後，引続き建設する方向の決定がなされるよう願うものである。

建設機械，あるいはこれを騒然としての工法の活躍は，上越新幹線においても，今日の他の地域に比べて大きく，これなくしては今日の完成はなかったであろう。たしかにこれらの機械や工法の強化は目をみはるものがあり，一昔前の不可能が今日では可能となっている。反面，人間の力はこれら猛牛皆馬の名駕者ではなく，機械や工法に引きずられて本来の判断をおろそかとなり，自然に逆らって天を恐れず，合理性と経済性の検討の尽くされぬ物を作ってしまったところではないであろう。上越，東北新幹線完成の機に，建設機械，工法それ自身と共に，それによって造られる鉄道構造そのものについても，反省と見直しの必要を感じているものである。

—YOSHIMURA Hisashi 日本鉄道建設公団理事（前・日本国有鉄道新幹線建設局長）—
昭和 57 年度官庁の事業概要(7)

通商産業省電源開発事業の概要

松本 幸雄*

1. はじめに

エネルギーは経済社会および国民生活の維持、発展のための基本的な要素であり、我が国が今後とも順調に経済発展を遂げ、国民福祉を向上させていくためには、エネルギーの安定供給を確保することが最も重要な政策課題である。

このため、今後ともエネルギー供給の安定を図るため石油について、安定供給体制の確立を図ることが肝要であり、石油の安定供給体制の整備、石油開発の推進および石油備蓄の増強を着実に進めていく必要がある。また、石油需要が安定している今日こそ、過度に石油に依存した産業経済からの脱却を図るための長期的視野に立った計画的な政策展開が求められており、したがって、原子力、石炭、LNG 等の石油代替エネルギーの開発、導入および省エネルギーや強化を推進していくことが必要である。また、安全に増大する電力需要に対応するため、安全性の確保に全力を傾けつつ、原子力発電をはじめとする電源立地を推進していく必要がある。

2. 電源の脱石油化の推進

(1) 原子力開発

自由核燃料サイクルの確立を図り、原子力の開発利用を促進するため、核燃料の推進等により核燃料資源の長期安定供給の確保を図るとともに、遠心分離機製造技術の確立を含め核燃料の開発体制の整備、商業再処理工場の立地の促進、放射性廃棄物処理対策の推進、使用済燃料再処理準備金制度の昭和 58 年度創設に向けての準備等、積極的な施策を展開する。また、原子力発電の一層の推進を図るために軽水炉改良技術の開発、高速増殖炉改良技術の開発、高速増殖炉等新型炉実用化のための調査等を着実に進める。

(2) 石炭火力、水力、地熱開発

石炭火力の建設および石油火力の石炭等の燃料転換を促進するため、火力発電所建設等の環境保全技術の確立を図るとともに、国産エネルギーである水力、地熱の開発を促進するため資源調査、事業者等に対する助成措置等を充実する。

3. 電源立地の推進と原子力発電所安全対策強化

(1) 電源立地の推進

電源立地を効率的に推進するため電源地域展開策を強化することと、電源地域への企業立地促進のための金融制度の整備を促進するための電力移転制度等交付金の拡充、電源立地促進対策交付金の産業振興施策への塩度拡大等電源地域の産業の振興に資する施策を強化する。

(2) 原子力発電所の安全対策強化充実

原子力イノ（仮称）の設置等原子力発電の必要性、安全性等に係る国民の理解と協力を得るための施策を充実強化する。さらに原子力発電のより一層の安全確保のため、電気事業者における保安管理体制を充実強化するとともに、国による原子力発電所の安全審査、検査および運転管理監督体制、防災・被ばく対策等を充実強化する。

4. 昭和 57 年度電力施設計画の概要

昭和 57 年度電力施設計画は 3 月末に指定電気事業者 14 社から通商産業大臣に届出が行われた。その概要は以下のとおりであり、通産省としては中・長期の電力需要安定化のためにはこれらの電源の計画的開発が必要であると考えており、今後とも電気事業審議会等会合の中間報告（昭和 57 年 4 月）で示された目標を踏まえ、原子力発電を中心とする石油代替電源の開発促進を図っていくこととする。

* MATSUMOTO Yukio
通商産業省エネルギー庁公益事務部水力課
電源開発計画および電力需要の見通し

（1）電源開発計画の前提となった昭和66年度需要および最大需要電力の見通しは表1-1のとおりである。

（2）電源開発計画と電力需要バランス

電力供給は常時需要がバランスするよう行われる必要があることから、電力供給が安定供給の責任を果たしていくためには、想定される最大需要電力に対しさらに事故等に対応するための十分な予備力を加えた供給力を保持する必要がある。保有すべき適正予備力は最大需要電力の8～10％と考えられ、各社は電源開発計画を策定するにあたりこれを踏まえた計画としている。

（a）電源開発計画（表2-1参照）

（b）電源構成

前述計画が実施された場合の昭和66年度末の電源構成は表4-1のとおりである。通産省としては、今後の電気事業審議会電源部会の再審査に示された目標に沿って電源の多様化を実現すべく電気事業者を指導しているところであるが、本計画は基本的にこの目標に沿ったものと考えている。今後、本計画に示された電源開発計画、特に原子力発電を中心にとする石油代替電源の開発のため、国民の理解と協力を得ながら官民の最大限の努力が傾注されてなければならない。

5. 昭和57年度電源開発基本計画

昭和57年7月、第88回電源開発調整審議会が開催され、昭和57年度の電源開発基本計画について審議を申し入れた。これによれば、長期の電源開発目標として

（1）昭和57年度（電力供給）は年率5.4%程度の割合で増加し、昭和64年度の最大需要電力は1億4,450万kWになるものと見込まれる。

（2）このような需要の増加に対応するためには、昭和57年度に6,570万kW程度の電源を着実に新設する必要がある。この計画に基づく9運転開始された場合には昭和64年度末の発電設備は2億3,600万kW程度となるものと見込まれる。

（3）昭和57年度ににおいては、1,000万kW程度の電源を電調度で決定することを目標とする（表5-1参照）。

（4）原動力別の最大出力および発電所要設備（表6-1参照）。

（5）施設部門の所要資金（表7-1参照）。

6. 昭和57年度電源の脱炭素化と電源立地の推進施策

（1）電源の脱炭素化

（a）原子力開発利用の推進

（1）原子力発電利用を推進するためにその基礎となる原子力燃料サイクルの早期確立を図る。このため遠心分離機
製造技術の確立を含めウラン濃縮事業化に向けての体制の整備、商業再処理工場の立地促進、放射性廃棄物処理処分対策の積極的な施策を展開する。

* ウラン濃縮事業化の推進 368百万円（0）
* 商業再処理工場の建設推進 2,689百万円（2,191百万円）
* 放射性廃棄物処理処分対策の推進 667百万円（591百万円）

（ii）原子力発電の推進
原子力発電所の建設および軽水炉の定着化を一層推進するため日中型軽水炉を確立することを目的とする軽水炉改良技術確証試験を引き続き実施するとともに、核燃料資源の有効利用を目的とする高速増殖炉の実用化調査を行う。また、将来に備え原子力発電所の廃炉対策等を推進する。
* 軽水炉改良技術確証試験等の推進 1,882百万円（738百万円）
* 高速増殖炉の実用化推進 27百万円（27百万円）
* 廃炉対策の推進 104百万円（76百万円）
* 新立地方式の検討 6百万円（6百万円）
* 原子力発電開発の推進：財投
（b）石炭火力、水力、地熱開発の推進
石炭火力発電所の建設および石油火力発電所の石炭等への燃料転換を促進するため引き続き燃焼処理等の環境保全技術の確立等を図るとともに、燃料節減等の観点からプラント熱効率の飛躍的向上を図るため、高性能石炭火力の実用化に必要な各種技術開発に対し補助を行う。また、豊富な再生可能エネルギーである水力、地熱の開発を促進するため資源調査や事業者に対する助成措置等を引き続き拡充強化する。
* 石炭火力発電所建設等の推進 9,202百万円（14,761百万円）
* 水力開発の推進
* 水力発電促進のための調査 1,123百万円（920百万円）

表-4 6年間未電源構成

<table>
<thead>
<tr>
<th>電源種類</th>
<th>6年間未電源構成 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水力</td>
<td>3,254 (20.6%)</td>
</tr>
<tr>
<td>高温地熱</td>
<td>667 (20.6%)</td>
</tr>
<tr>
<td>石油</td>
<td>1,165 (35.4%)</td>
</tr>
<tr>
<td>石炭</td>
<td>2,332 (40.9%)</td>
</tr>
<tr>
<td>石油</td>
<td>6,301 (33.4%)</td>
</tr>
<tr>
<td>石炭</td>
<td>1,220 (11.0%)</td>
</tr>
<tr>
<td>L N G</td>
<td>3,769 (72.1%)</td>
</tr>
<tr>
<td>L P G</td>
<td>110 (0.0%)</td>
</tr>
<tr>
<td>太陽光</td>
<td>1,607 (1.1%)</td>
</tr>
<tr>
<td>総計</td>
<td>13,566 (100%)</td>
</tr>
</tbody>
</table>

表-5 昭和57年度着手目標

<table>
<thead>
<tr>
<th>水力</th>
<th>火力</th>
<th>原子力</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>500</td>
<td>1,000</td>
<td></td>
</tr>
</tbody>
</table>

表-6 原子力発電施設の最大出力および着工着手目標

<table>
<thead>
<tr>
<th>原子力発電所</th>
<th>最大出力（kW）</th>
<th>着工着手目標（kW）</th>
<th>合計出力（kW）</th>
</tr>
</thead>
<tbody>
<tr>
<td>新規</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水力</td>
<td>1,085</td>
<td>419</td>
<td>1,504</td>
</tr>
<tr>
<td>火力</td>
<td>1,050</td>
<td>21,313</td>
<td>22,363</td>
</tr>
<tr>
<td>石油</td>
<td>1,916</td>
<td>5,457</td>
<td>7,373</td>
</tr>
<tr>
<td>石炭</td>
<td>3,106</td>
<td>61,916</td>
<td>65,022</td>
</tr>
<tr>
<td>L N G</td>
<td>3,203</td>
<td>70,737</td>
<td>73,939</td>
</tr>
<tr>
<td>L P G</td>
<td>1,684</td>
<td>58,277</td>
<td>60,961</td>
</tr>
<tr>
<td>総計</td>
<td>6,787</td>
<td>141,087</td>
<td>147,874</td>
</tr>
</tbody>
</table>

表-7 施設部門別の着工目標（昭和57年度着手予定目標）

<table>
<thead>
<tr>
<th>項目</th>
<th>新規</th>
<th>準備</th>
<th>合計</th>
<th>6年間計</th>
</tr>
</thead>
<tbody>
<tr>
<td>水力</td>
<td>155</td>
<td>4,570</td>
<td>16,025</td>
<td>20,595</td>
</tr>
<tr>
<td>火力</td>
<td>14,928</td>
<td>6,024</td>
<td>20,952</td>
<td>20,952</td>
</tr>
<tr>
<td>石炭</td>
<td>15,083</td>
<td>10,594</td>
<td>25,677</td>
<td>25,677</td>
</tr>
</tbody>
</table>

（2）電源立地の推進
（a）電源立地の推進
原子力をはじめとする石油代替電源の立地を推進するため、電源地における電源立地の促進をはじめとする地域電源開発策を強化するとともに、電源関係自治体の財政安定化のための措置を講ずる。
* 電源立地における電源立地促進のための助成支援の強化 3,300百万円（2,300百万円）

* 電源地域における産業基盤整備 37,982百万円（39,682百万円）
* 原子力発電施設着工地区交付金 6,417百万円（3,277百万円）
* 水力発電施設着工地区交付金 3,724百万円（3,538百万円）

（b）電源立地に対する国民的了解と協力の促進
電源立地について地元住民の理解と協力を得るため、従来から実施してきた電源立地の必要性、原子力発電の安全性、電源立地に伴う環境対策等についての広報活動等を充実する。
建設の機械化

原子力発電所安全対策の推進

原子力発電所のより一層の安全性、信頼性の確保を図るため、運転管理専門官の増員および総合的な保安管理
調査の実施等検査、運転管理監査体制を強化するととも
に、安全審査官の増員および安全機関コードの改良等安
全審査機能の充実を図る。また、被ばく低減化の推進、
原子力発電所に係る防災対策の整備を図る。

原子力発電所の安全管理監査の充実 219 百万円
(225 百万円)
安全審査機能の充実・強化 2,004 百万円(1,861
百万円)
被ばく低減化対策の推進 509 百万円(338 百万円)
品質保証体制の基盤強化 10 百万円(10 百万円)
防災体制の整備 495 百万円(551 百万円)

（注）（）内は前年度予算を示している。
上越新幹線建設の施工技術の回顧

岩田 敏雄* 高橋 和雄**

1. まえがき

上越新幹線（大宮～新潟間約270 km）の建設工事は、昭和46年12月大清水トンネルで着工して以降11年半の歳月を経て完成し、昭和57年11月15日に大宮駅を暫定始発駅として開業することとなった。これにより雪の越後線の日本海側と首都圏を結ぶ列車輸送体系は新幹線を基盤として高速・効率化の増大へと大きく変わることとなる。この機会に上越新幹線の計画から現在に至るまでを振り返り、施工技術の特徴の概要について述べることとしたい。

2. 建 設 計 画

(1) 建設の経緯

昭和44年5月30日閣議決定された新幹線総合開発計画では、60年における国民総生産量を37兆円に大幅拡大する計画を提出した。このための新幹線技術と工法の開発にあたり、新幹線開発の総延長は約7200 kmにわたるものであった。

新幹線の建設計画では、新幹線建設審議会に審議された新幹線総合開発計画において、新幹線建設の総延長は約7200 kmにわたるものであった。

3. 上越新幹線開通

500 km、および成田（東京空港間約65 km）の新幹線が開通した。

4. 新開通の意義

上越新幹線開通は、中部地方の交通の重要性を示し、また新幹線の建設に向けた技術革新の中核的な役割を担っている。

* IWATA Toshio
日本鉄道建設公社幹事級幹事部長第一課長

** TAKASUSUKI Kazuo
日本鉄道建設公社幹事級幹事部長第一課補佐

表-1 上越新幹線建設の経緯

<table>
<thead>
<tr>
<th>年月</th>
<th>事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>46年10月14日</td>
<td>工事実施計画の基本方針が決定された。</td>
</tr>
<tr>
<td>46年12月9日</td>
<td>最初の工事に着手（大清水トンネル）</td>
</tr>
<tr>
<td>52年3月30日</td>
<td>第1点工事実施計画の基本方針が決定された。</td>
</tr>
<tr>
<td>52年11月8日</td>
<td>信濃川新幹線管内総合開発計画が発表された。</td>
</tr>
<tr>
<td>54年1月25日</td>
<td>大規模トンネル（開発22 km）の調査が完了。</td>
</tr>
<tr>
<td>54年3月2日</td>
<td>頻繁な新幹線管内総合開発計画が発表された。</td>
</tr>
<tr>
<td>54年3月28日</td>
<td>山口トンネル予定工事区間で出水事故（第1回）</td>
</tr>
<tr>
<td>54年8月20日</td>
<td>大規模トンネルの火災事故が発生。</td>
</tr>
<tr>
<td>55年3月8日</td>
<td>山口トンネル管内工事区間で出水事故（第2回）</td>
</tr>
<tr>
<td>55年3月18日</td>
<td>第2回工事実施計画の基本方針が決定された。</td>
</tr>
<tr>
<td>55年10月2日</td>
<td>新幹線用車両の運搬（新幹線用車両の運搬）</td>
</tr>
<tr>
<td>55年11月5日</td>
<td>貨物列車～新幹線管内総合開発計画（実現）</td>
</tr>
<tr>
<td>55年12月16日</td>
<td>新幹線用車両の運搬（新幹線用車両の運搬）</td>
</tr>
<tr>
<td>56年3月13日</td>
<td>新幹線開通（実現）</td>
</tr>
<tr>
<td>56年9月30日</td>
<td>新幹線開通（実現）</td>
</tr>
<tr>
<td>56年12月1日</td>
<td>新幹線開通（実現）</td>
</tr>
<tr>
<td>57年3月31日</td>
<td>新幹線開通（実現）</td>
</tr>
<tr>
<td>57年12月23日</td>
<td>新幹線開通（実現）</td>
</tr>
<tr>
<td>57年6月1日</td>
<td>新幹線開通（実現）</td>
</tr>
<tr>
<td>57年7月22日</td>
<td>新幹線開通（実現）</td>
</tr>
<tr>
<td>57年11月15日</td>
<td>上越新幹線開通</td>
</tr>
</tbody>
</table>

500 km、および成田（東京空港間約65 km）の新幹線が開通した。
(2) 建設基準
建設基準は山陽新幹線を基盤としているが、上越新幹線の構造は、最高速度 360 km/hr の高速輸送に耐えうる高規格なものとなっている。また、山陽新幹線の経験を生かすとともに、安全性対策のための大規模な散水消雪設備、メンテナンスフリーを指向した無床床軌道構造、騒音、振動を軽減するための線路構造物等の新技術の導入など大幅な改善を行っている。建設基準はおおむね表-2のとおりである。

(3) 路線の概要
上越新幹線の起点は埼玉県大宮市、終点は新潟県新潟市である。在来線の延長は 303 km であるが、新幹線のルートは約 10% 線路され、延長約 270 km となっている。駅の設置位置については、利用客の利便、運転上の諸条件、地域社会に与える影響などについて総合的な観点から検討した結果、大宮、熊谷、高崎、越後湯沢、新潟市、高崎子駅を在来駅と並設し、上毛高原、燕三条駅を新設とした。なお上越新幹線、9駅の平均駅間距離は約 34 km で、東海道新幹線東京～大阪間の約 43 km より短く、東北新幹線東京～盛岡間の約 35.5 km とほぼ同じになっている。

ルートとしては、埼玉県の大宮市で東北新幹線と分岐し、関東平野を一路北進し高崎市に至る。その後、熊谷、川越、高崎、新潟市等の山地を大清水トンネルなどの長大トンネルで突破し、新潟市の渋沢町を経て魚沼丘陵地を再び大小のトンネルで貫き、長岡市に至る。長岡からは越後地方の越後平野を北上し、日本海面し、裏日本に至る。裏日本の玄関口である人口 45万人の新潟市に至る。この間、綾部市、新潟市内に及ぶ
3. 工事の概要

（1）上越新幹線の特徴

上越新幹線と他の新幹線の構造種別は表-3のとおりであり、東海道新幹線は切取盛土の路盤構造を主体とし、岡山以西の山陽新幹線ではトンネルの比率が高かった。上越新幹線では高架橋の占める割合は48.4％と高く、騒音・振動対策、雪害対策および強度工法を加味したことによる構造物がマッシュブ化されているが、地盤のよいところでは経済性を考慮して壁式高架構造を採用している。また軟弱地盤では、不同沈下に対応するため連続した地中梁を有する背割型高架構である。橋梁の占める割合は11.7％であり、PC橋梁を大幅に取り入れ、押出し工法も採用している。新しい形の橋梁としてはPCコンクリートランガー桁の赤谷川橋りょうとT形PCラーメン材の香宮川橋りょうがある。

次にトンネルの占める割合は39.2％であり、延長にして105.7 kmである。世界最長の山岳トンネルの大清水トンネルの下を通過し、6km以上のトンネルが7本あり、トンネル総延長の81％を占めている。このうち中央トンネルは異常出水により2回にわたって工事は遅延を余儀なものであつたが、一方では日本で初めての水密的なNATM工法も採用している。

なお、上越新幹線は我が国数数の豪雪地帯の新潟県を走るため雪対策に着々としており、これについては別途次項で述べる。

（2）高架橋

上越新幹線ではトンネル、橋梁を除いた区間の大部分は高架橋であり、ここは主に都市機能の確保、将来の都市開発および保守の省略化のためスラブ軌道を主体とすることを考慮したまとめである。工事にあたっては、橋梁の各ブロック相互間の直径を変えて基盤の不同沈下に対する対策を考慮し、相模川より高架橋の間に単純構造の桁を挿入するゲルダ型高架橋を相模川より呼出高架橋の端部の柱を同一の基礎の上に載せ、連続した地

中を有する背割型高架橋。橋殿を付いた構造として橋軸方向の水平力を1個所の壁構造で集中して受ける壁式高架橋、桁式高架橋、および工期の短縮を目的としたSRC桁式高架橋などを地盤条件等により選んでいる（図-3参照）。

（3）橋 梁

新幹線の騒音・振動対策のため上越新幹線の橋梁はコンクリート橋を採用しており、主な橋梁は表-4のとおりである。このうち特殊なものとして検名トンネルと中央トンネルの間に位置する赤谷川橋りょうは支間109.5 mの2径間T形PCラーメン橋であり、ディビジター工法で施工され、橋梁の高さは河床上約40 mである。また上毛高原駅の南、黒岩八景付近に位置する赤谷川橋りょう

<table>
<thead>
<tr>
<th>表-3 構造物の種類別延長</th>
</tr>
</thead>
<tbody>
<tr>
<td>構造種別</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>土工</td>
</tr>
<tr>
<td>橋梁</td>
</tr>
<tr>
<td>市街架橋</td>
</tr>
<tr>
<td>トンネル</td>
</tr>
<tr>
<td>合計</td>
</tr>
</tbody>
</table>
ようは利根川支流の赤谷川および国道17号新大崎に至るまでを含む。大規模工事を進めるため、河川上部の高さが約60mで、アーチ型の堤体を付近の環境と調和を図っている（図-4参照）。

また、仮設工法も採用している。これは既設の道路や所在地を再利用するため、交通規制や道路閉鎖等をせずに自動車を通行できることや、仮設部分の設置が不可能な川上への仮設にもすぐれた等の利点がある。

（4）トンネル
上越新幹線は山の山岳であることがわしい日本山脈を貫くとともに、新たに設計された曲線。こう配等の制約のため、トンネルが長く、主なトンネルを表-5に、世界のトンネルとの比較を表-6に示す。

トンネルの総延長は106kmをこえ、全線の39%を占めており、大小23列のトンネルがある。このうち、複数、中山、大清水の3トンネルが世界の10大トンネルに入っている。

大清水トンネルは群馬県水崎町から新潟県湯沢町に抜ける延長222.2kmの世界最長の山岳トンネルである。比較的新設地質に富んだが、多量の地下水を伴う断層帯、また透水性地質の地陥岩が部分的に存在したり、土被りが非常に大になっている現象がみられた。ルートは図-5のように、昭和初期にできた在来線の清水トンネルは川端の急坂をループ線で巻き、大清水トンネルよりも150～200mほど上を通過しており、複線化のため補調した新清水トンネルはちょうどその中間を通っている。複数のトンネルは上越新幹線第2区の長さのトンネルで、複数の山の頂を通過するため泥流堆積層という多量の水を含む砂岩地質であったことにより難航した。

次に上越新幹線全体として最も難航したのは中山トンネルで、径水圧で多量の地下水を伴う未固結の火山堆積層である壁根層（八木沢層）より昭和51年2月、昭和55年3月の2回にわたり異常出水があり、トンネルが水没した。これにより上記火山堆積層間隔に対し約360mのルート直上部の地層より約640個所のボーリングを行ない、薬液注入することにより地盤を固めた。この火山堆積層を極端に避けるため一部右側（約160m）のルートを変更し、工事の進行を図った結果、昭和56年に貫通した。

なお、中山トンネルの終了方で緑色壁根層による断層性土圧により難航していたが、NATM工法の導入によって開通している。

（5）隧道
上越新幹線の隧道は、現在の省庁化のため東北新幹線同様に幅広いスラブ軌道を表-7に示すように採用している。

特色としては、新幹線として初めて本格的に採用され、上越線のスラブ軌道、大清水トンネルをはじめとする長大トンネル内に用いた移動プラント車によるスラブ軌
4. 雪害対策

上越新幹線は新潟県で最大降雪深 1m 以上、また日最大積雪厚 1m 以上にも及ぶが国有数の豪雪地域を走ることにより、冬期の高速列車の正常な運転を確保することが重要な問題である（図-6参照）。雪害対策区間では、積雪深および降雪量を考慮し、群馬県の沿線県内として、上越新幹線の雪害対策区間の一般的な長さの区間においては敷雪消雪によって線路の無雪化を図ることとした。

上越新幹線の敷雪消雪設備は昭和 47 年の完成を受け、その年の秋に新潟県南魚沼郡旭町内に敷雪試験場（九日町高架線、延長 971 m）を建設し、以来 6 冬にわたりその基礎試験を行ってきた。この間、効率のよい自動システムを目指して実際の運転しながら改良を進めてきた。その結果、敷雪を検知し自動的に適量の敷雪を行うと
とともに、現状を遠方で監視制御できるシステムを開発することができ、これを朝馬県月見町から新潟県新潟市に至る 157 km のうち、周辺区間約 80 km にわたり設置することとした。基盤数としては、消雪基地35基、取水基地7基となり、工事費は約500億円となった（図-8参照）。

取水基地とは、消雪用水を河川から取水する施設である。なお雪を融かした水は回収して、また暖めて高架橋に送る加温循環方式を主に採用している。また昭和53年度、54年度は長岡～新潟間において実験を走行させ、列車が消雪設備等に及ぼす影響、雪の車両への影響等の動的な試験を加えて行った。また昭和55年度は前年度の試験結果を踏まえ湯沢～新潟間を列車走行しながら雪対策の確認を行った。

5. 環境保全対策

新幹線の建設に伴って生ずる環境問題は、新幹線列車の走行による騒音・振动問題が主なものであるが、そのほかにはテレビ電波障害および構造物による家屋への日照障害があり、各々対策を講じている。騒音・振動対策であるが、新幹線の建設にあたっては、環境庁の環境基準を達成するために東海道、山陽新幹線の経験を生かすとともに、研究開発の成果を取り入れた対策を実施した。

6. す び

上述新幹線大宮～新潟間の建設工事は幾多の困難に直面しつつこれを突破して完成し、待望の開業を11月15日に迎えることとなった。今後は乗客数が増し、また雪に強い新幹線として広く愛されるよう公団職員一同念願するところである。
回転工法によるトラス橋の架設
鳥飼・吹田操間東海道乗越橋

杉本 進* 赤尾文 廣**
鈴木 彰***

1. まえがき

本橋梁は、鳥飼貨物ターミナル新設（昭和57年11月開業）に伴い吹田操車場から鳥飼基地に至る延長約5kmの連絡線のうち、東海道本線（茨木～千里丘間）上を斜めに乗り越えてい

2. 概要

架設位置：大阪府茨木市東栄野辺町（図-1参照）
橋長：63.400m
支間：62.400m
形式：単純下路トラス橋（スラブ軌道直結式）
活荷重：KS-18（単線）
曲線半径：R=400m
縦断こう配：i=8.5%
鋼重：約280t

3. 特色

(1) 回転工法による架設
回転工法を採用した主な理由は次のとおりである。
①架設位置が東海道本線上5線を斜めに（約35°）横断すること。また安全性が強く要求されること。
②トラス橋の組立スペースが倉庫、住宅地に近接

写真-1 トラス回転架設

し、作業スペースに制約を受けること。
③線路開通時間が短時間しかとれないこと。

(2) 回転ローラ付移動台車の使用
トラス橋の回転時は、旋回台を中心にとして前方支点は円錐を描いて移動するが、移動台車は受桁上の直線軌条上を移動するので、それに対処するため図-2に示すように台車上の移動ローラでトラス橋を支持し、しかも台車上で自由に回転できる構造の移動台車（写真-2参照）を使用した。トラス橋には製作時にローラの支持梁を取付け、水平力に対しては8個のサイドローラで抵抗させた。

(3) プリングホイストによるトラス橋の降下
本装置は油圧ジャッキ本体に安全装置があるため安全確実に施工でき、降下速度も早く、管理も容易である。本橋では荷重90t×4台のホイストにより降下を行った。本装置の降下要領 仕様は図-3に示すとおりである（写真-3参照）。
4. 施 工

架設フローチャート、全体工程は 図-4、図-5 に示すとおりである。

(1) 工場仮組時の試運転
現場架設にあたり、あらかじめ回転装置の機能、機構および安全性を確認し、あわせて現場施工管理の参考データを得るために工場での受桁およびトラスの仮組立時に同様回転装置を設置し、現場施工時とはほぼ同じ状態で受桁の回転、回転引きし、およびトラスの回転試験を実施した。

(2) 受桁の回転
受桁はできるだけトラスの降下量を少なくするため服
順調に回転できた。

（3）トラス橋の回転
トラス橋はペント基礎設後、受桁と同様に線路上に平行に70tベントトラッククレーンにより組立てた。組立は回転後の線路上作業を極力少なくするため床版工事は残すだけのほぼ完成状態とした（写真—5参照）。

トラス橋と受桁の位置関係は、地形の状況を考慮して図—8の線形図とし、34°の回転とした。トラス橋の回転は、支点上に設置した旋回台（図—9、写真—6参照）を中心として回転ローラ付移動台車2台を用いて受桁上を約31m移動させた。けん引装置は作業時間、施工性等を考慮し、受桁と同様単肩ウインチを用いた（図—10参照）。回転は昼間上下34本の列車が通過する上空を約47分でホープ上昇した。

（4）受桁の回転引戻し
トラス橋を4台のジャッキホイストに盛替え支持後、受桁を架設時と同じ要領で夜間線路固定間合で組立位置まで回転引戻し行った。

（5）トラス橋の降下
降下は、トラス架設後できるだけ早く所定位置に接付することが安定上望ましいため、降下設備をあらかじめ設置しておき、受桁引戻しに連続して降下作業を行った（図—11参照）。降下量は吹抜け約3m、鳥桁約2.5mで、各側2個ずつ計4個のジャッキングホ

<table>
<thead>
<tr>
<th>年度</th>
<th>56年</th>
<th>57年</th>
</tr>
</thead>
<tbody>
<tr>
<td>工事製作</td>
<td></td>
<td></td>
</tr>
<tr>
<td>仮組立および回転試験</td>
<td></td>
<td></td>
</tr>
<tr>
<td>備 準 工</td>
<td></td>
<td></td>
</tr>
<tr>
<td>受桁工</td>
<td></td>
<td></td>
</tr>
<tr>
<td>トラス工</td>
<td></td>
<td></td>
</tr>
<tr>
<td>床版工</td>
<td></td>
<td></td>
</tr>
<tr>
<td>跡片付</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図—5 全体工程

図—3 降下（1ストローク）要領図
図—4 橋設フローチャート
図—4 回転台
写真—4 回転台
イストにより1ストローク約250mmで連続的に約2時間で全降下を完了した。

5. あとがき

大動脈である東海道本線上を跨ぐトラス橋の回転工法による架設要領とその設備を中心に報告した。本橋はどんな作業が高線近接直上作業という厳しい施工条件下であったが、3月9日受桁回転、5月6日トラス橋回転、5月12日受桁回転引戻し、5月12日トラス橋の降下撤付、8月23日入線試験と無事故、無災害で施工することができた。

回転工法の採用により橋台施工と同時に受桁組立、回転が施工でき、工程を大幅に短縮できたという大きなメ
リットを付記することと、今後この種の工事における一資料に絶対幸いである。

最後に、本工事の計画、施工にあたり関係各機関のご協力、ご協力をいただいたことを深く感謝申し上げます。

写真-8 旋回台

図-10 トラス移動図

図-11 トラス降下設備図
1. まえがき

国鉄長野駅は、長野県庁の所在地である長野市の北東側、仏都高光寺の南西側に位置している。その長野市は明治30年4月1日に市制を施行され、近年に近辺に市町村を合併して人口53万人、その面積は400㎢の広域都市であり、長野県における政治、経済の中心をなしている。市の中心をなす中央通りも、かつての門前町の風景から近年高層ビルが建ち並び、近代都市にかわりつつある（図-1参照）。

長野市では駅周辺第一土地区画整理事業を強力に推進中で、昭和56年3月7日には県下初の市街地の地下化を完成させる。また、その一環として長野駅を中心にした東西の連絡通路の不備を解消するため長野市と長野県との協議が進み、長野駅周辺の西側と東側を直結する横断地下通路（自由通路）が新設されることになったもので、工事は1日平均350本の列車を安全に運行しながら実施するため長野市が長野市から委託を受けて施行する工事で、その概要について述べる。

2. 設計概要

地下道の構造は鉄筋コンクリートボックスズレーンとし、歩道部分は有効幅員6.00m、高さ2.5m、その上下に共同溝（上下道、下水道、電力、電気ケーブルを併

図-1 長野県内における国鉄の位置付け

設）を設置するものである（図-2、写真-1参照）。

（1）工法選定

本工事の施工工法の選択にあたっては、長野駅の現状、旅客扱いのなかで、工事を安全に施工するため種々の工法を検討した結果、3案が考えられた。工事の安全性、経済性、工期等総合的な見地から判断して第3案のESA工法が適当となり、採用されることになった（図-3参照）。なお工事進行については図-4のように協定された。

（2）地質概要

長野駅周辺の地質は千曲川流域の長野盆地にあり、尾川、尾花川、浅川等の合流点に位置し、度重なる出水により流域を移動させ、運搬された河川堆積物により形成された複合層状地盤となっている。現場付近の地質は地
表層下1.5m付近までは堆積粘土層、それ以下は偏300〜1,000mmの玉石を主体とした玉石混り砂れき層からなり、一般的傾向として下層に至るに従って玉石は大きくなる。また地下水は比較的低く、10m以下である（図-5参照）。

3. ESA工法について

（1）鋼管防護工
钢管防護工はESA工法の準備作業として行うものである。構造下部材に不可欠な工法で、鉄筋工で研究所されている。長野駅は営業線が側線を含め
<table>
<thead>
<tr>
<th>No.</th>
<th>施工法</th>
<th>第1案（パイプルーフメッシュ工法）</th>
<th>第2案（BPA工法）</th>
<th>第3案（UT工法）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>断面形状</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>混凝土基盤</td>
<td>コンクリート t=240 kg/cm²</td>
<td>第1案と同じ</td>
<td>第1案と同じ</td>
</tr>
<tr>
<td></td>
<td>鋼管経</td>
<td>SD35</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>鋼管経径</td>
<td>d=25 mm</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>地下通本体使用材料の表示</td>
<td>反力を抜基盤にとると、延長の長い地下通にはフライシェッキング工法より効果的である。</td>
<td>反力を抜基盤にとると、延長の長い地下通にはフライシェッキング工法より効果的である。</td>
<td>反力を抜基盤にとると、延長の長い地下通にはフライシェッキング工法より効果的である。</td>
</tr>
<tr>
<td>3</td>
<td>構造上の留意点</td>
<td>本体セダメルによる3分割施工のため両側基盤や中央部の開発基盤に接合部は鋼管が切断されるため配筋、十分の注意を要する。</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>施工上の注意点</td>
<td>①パイプルーフの延長がないため、中間部（第2ホーム）に立坑を設け、左右より押込みの確認を行う。</td>
<td>①パイプルーフの押込みは第1案と同様。</td>
<td>①パイプルーフの押込みは第1案と同様。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>②一般的に狭い空間での植敷下作業であり、施工効率が悪い。</td>
<td>第2案は、全体的に狭い空間での植敷下作業である。</td>
<td>第2案は、全体的に狭い空間での植敷下作業である。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>第3案は、全体的に狭い空間での植敷下作業である。</td>
<td>第3案は、全体的に狭い空間での植敷下作業である。</td>
<td>第3案は、全体的に狭い空間での植敷下作業である。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>③溶体コンクリートセダメル内で3分割施工となるため他の案に比較して困難である。</td>
<td>③溶体コンクリートセダメル内で3分割施工となるため他の案に比較して困難である。</td>
<td>③溶体コンクリートセダメル内で3分割施工となるため他の案に比較して困難である。</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>作業</td>
<td>1,023百万円</td>
<td>1,000百万円</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>工期</td>
<td>1,170日（39ヶ月）</td>
<td>1,170日</td>
</tr>
<tr>
<td>7</td>
<td>総合判定</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

図-3 信越本線長野駅構内地下通路新設工事施工法比較図

13本，乗降場が4本，跨線橋設置4箇所，いずれも当該工事現場の直上でこれら構造物の安全を確保し，また1日平均250本の列車運行の安全を確保しながらの工事である。

本工事で施工した鋼管防護工は l=140.7 m，d=914 mm と長大，大口径のもので，人力掘削板とした。埋入方法は，大きな鋼管を片押しにすることは施工精度，推力等の点から問題があるため東口から65.0 m，西口から75.7 m 下敷し，第4ホームの中心付近でドッキングした。鋼管は標準の長さを 6.0 m とし，敷接する鋼管にはガイド鋼で連結し，鋼管圧入作業の施工精度を高めるのに役立った。鋼管防護工は計画時点で d=600 mm 機械掘りであったが，地質調査の結果を見て計画を変更した（写真-2参照）。

図-5 地質
（2）ESA工法

本工法は最近棟村技術研究所で開発された工法であり、日本で初めて施工される。また世界的にも例外的な珍しい工事である。この工事の特徴を一言で言うと、各段階間で推進ジャッキを配置し、反力としてはそれ以外の仮体が利用される。

Endless Self Advancing、無限・自走・前進工法のイニシャルを取ったもので「エッサ工法」と呼ばれている。ESA仮体の重量は5.0m→250t、10.0m→450t、15.5m→650tと重く、仮設することは不可能なために現場製作をする。このような重量をもつ仮体がどうして動くのか、そのメカニズムは図-6、図-7によって紹介する。

図-6において、

③鋼管仮設工の施工は前述のとおり

写真-2 人力掘削の状態

図-4 工事工法

①仮設を掘削する。①、②、③仮体を製作する。

この場合の仮設には二つの役割がある。その1は、ESA仮体のガイド溝がコンクリートと鋼板で囲まれる。仮体には下向きの突起を設ける。相方がかみ合って方向と高低が決まる。その2は、第3段階まで使用する仮設からの反力を伝えるPC鋼線を張る。

本工法はPC鋼線とESA仮体の盛替えごとに第1段階から第5段階へと区切っている。

（a）第1段階

①を圧入する手順

i）仮設のESAジャッキに力を加える（写真-3、写真-4参照）。
ii）①の後方のESAジャッキをフリーとする。
iii）①と②の間の推進ジャッキで①を圧入する。この場合の反力は、②と③と仮設のESAジャッキである。
②を圧入する手順
i. 西口からの ESA ジャッキはそのまま
ii. ①と③の間の推進ジャッキは締める。
iii. ③と⑤の間の ESA ジャッキは力を加え、①, ③, ⑤を一体とする。
iv. ②と⑤の間の推進ジャッキで②を圧入する。この場合の反力は、①と⑤と西口の ESA ジャッキである。
③を圧入する
i. ③と⑤の間の推進ジャッキを締める。
ii. 西口の ESA ジャッキと⑤後方の ESA ジャッキで力を合わせて③を引込む。この場合の反力は①と③と西口の ESA ジャッキである。

第 1 段階は①, ②, ③を圧入し、③の後方は④が製作するスペースができるまでこれを繰返し行う。

写真-3 ESA ジャッキの取付

(b) 第 2 段階
PC 鋼線は①, ②, ⑤, ⑥を結び、西口からの PC 鋼線は第 1 段階と同様、③の後方にある。圧入方法は同様が

図-7 ESA 工法のジャッキ配置
増え、第3段階、第4段階、第5段階と並んでいても圧力の手順は変わらないので、説明は省く。

余談であるが、ESA工法を「尺取虫工法」という人もいる。頭を進め、次に腹部を引寄せ、後部を引寄せ。この様子が尺取虫の歩行（？）に似ているからだと思（写真-5 参照）。

（3）本工事の反省

① 東口の舗体製作発進基地は 36.0 m、この中で 15.5 m × 2 個は狭かった。あと 3 m あれば作業が容易だったと思う。

② 設計推進力は 図-7 のジャッキ配置図のとおりであるが、実際の推力は 図-6 に示すとおり大幅な差が生じた。原因としては、舗体側面より崩落した玉石が隙間をすり、このとき玉石が回転し大きな抵抗生じたものと思われる。推力不足は推進ジャッキを増し、舗体圧況を強行するが、問題となるのが反力である。反力はジャッキの増で簡単にいかねが、反力は設計どおりの数値しかない。4 舗体結ぶ PC 鋼線を 5 舗体に変更すれば解決できるはずであるが、PC 鋼線を通すためのシース管は埋設されていない。やむを得ずこの現場では基地後方の仮土留杭に反力を求めた。万が一の場合に備えてシース管は数本多く埋設しておいた方がよい。

③ ESA ジャッキで各段階ごとに最後部の舗体を PC 鋼線で引く場合、PC 鋼線が伸びる。この伸びた鋼線が舗体を急激に引き、その前の舗体間にいる推進ジャッキに衝撃を与え、オイル流れ、ユニバーサルヘッドの破損等の故障が生じた。

④ 鋼管防護工施工後、導坑を掘削した。この導坑のゆるみが図-8 のように鋼管まで達し、舗体圧況時に地上の構造物が沈下した。鋼管が地盤を支えられなくなったり、たわむために沈下が生じるものと思う。このために

写真-4 推進ジャッキの取付

写真-5 切羽の掘削状況

図-8 導坑掘削によるゆるみの範囲

図-9 レールによる補修略図

固体と鋼管の間隔を設計の 200 mm が確保できるように古レール等を鋼管に溶接した。これによって一様の成果があったと思う（図-9 参照）。

4. あとがき

日本で初めて施工の ESA 工法であり、着工以来 2 年 5 カ月経過した現在約 75% の舗体圧況が完了し、来年 3 月完成目途に抜本施工を施工中である。この工事も未だ途中であり、いまだでの教訓を活かし、さらに研鑽を重ね、無事故で完成させたい。今後も ESA 工法による工事が各所で施行されることと思うが、多少なりと参考になれば幸いである。
御坊火力発電所人工島埋立工事の実績

錦織達郎* 松岡 元一**
西東 茂之*** 木越 正司****

1. まえがき

関西電力では昭和59年運転開始をめざして和歌山県御坊市に火力発電所（出力180万kW）の建設を進めているが、この敷地は我が国でも初めての人工島方式によるもので、敷地造成工事に要した総埋立土量は約280万m³であり、そのうち約200万m³が陸送土である。陸送土埋立工事は切取工を含む、埋立に至る作業を継続した工法で施工を行った。山の切取工事には大型機械による重機工事と岩を碎く破碎プラントを設置し、土砂の運搬にはベルトコンベヤを設置し、埋立工事にはベルトコンベヤとの連続性をもたせたシフタ・ベルコンベヤ方式（ブルコン工法）で施工した。その結果、当初の埋立工期を大幅に短縮するとともに、公害防止にも良好な成果を得た（図-1参照）。

図-1 御坊火力発電所位置図

この一連の埋立工事にあたり、マイクロコンピュータを活用して切取りの重機工事、ベルトコンベヤ、埋立設備等の機械類の運転状況を自動管理できるシステムを導入し、稼働率の向上に役立てた。これら一連の成果を報告し、今後の大型重機工事の施工管理の参考としたい。

2. 工事概要

（1）土取工事
当工事は御坊市が都市計画事業の一環として行う御坊総合運動公園の土地造成工事を関西電力が御坊市より受託し、工事から生じる砂土を人工島埋立用土砂として使用したものである。
切取土量：約310万m³
土取区域の開発面積：約31ha
地質：表土、風化土、および岩（砂岩、頁岩）
防災工事：調整池、沈砂池6個所
破砕設備：能力2,800t/hr（ST ジョークラッシュ4基）

（2）運搬・埋立工事
ベルトコンベヤ：能力3,000t/hr、延長1,687m
埋立面積：約35ha
埋立土量：約200万m³

（3）工期
発電所建築工事の関係から、クリティカルパスとなる発電所本館部分を第1工区、タングクアード部分を第2工区とした。

（a）人工島造成工期
第1工区：当初予定…昭和55年3月～57年4月
実績…昭和55年3月～57年4月（2.5カ月短縮）
第2工区：当初予定…昭和55年3月～58年3月
実績…昭和55年3月～57年8月（6カ月短縮）
（b）陸送土埋立工期（埋立工事期間のみ）
当初予定…昭和56年9月～57年11月
実績…昭和56年9月～57年4月（7カ月短縮）

（4）地質
第三紀層の砂岩と頁岩の互層であり、亀裂が多く、弾性波速度は2,200～3,700 m/secである。

（5）その他
切取土は埋立後の諸工事に関係最大粒径150 mm以下に破碎する。

3. 土工計画の概要

（1）工法の選定
平面図に示すように埋立地までの距離約1.7kmは市街地に近接しており、また国道42号線を通過する。したがって、車両による埋立用土砂運搬は公害対策上ならびに交通安全上、非常に困難であるため、ベルコンベヤを設置し、低公害、安全かつ連続的に土砂運搬を行う工法を採用した。ベルコンベヤの架設方法は通例1スパン（約30m）ごとにクレーン等で架設するのが一般的であるが、設置箇所が丘陵地および山間地であり、工事用道路や部材組立用敷地の確保が困難であったため、前例のない全長378m、総重量2,600tのコンベヤフレームを手延工法で架設した。また山間部の急斜面ではケーブルクレーン（6.5t仕様）で架設を行った。

埋立地の土砂まき出し方法は、種々の工法を比較検討したが、公害対策上有利であり、かつ顕著なベルコンベヤとの連続性を確保したブルコン工法を採用し、土砂運搬の効率を高め、連続施工を可能にした。

土壌処理での切取作業は岩掘削の関係からショベルダンプ工法を採用した。陸送土埋立作業のフローは図-3のとおりである。

（2）土工事
地質は泥化土（軟岩）と砂岩、頁岩を主体で、切取りは発破（ベンチカットおよび盤打ち発破）と80t
建設の機械化 '82.11

級の超大型ブドウサイによるリビング作業により行い、7 m³クラスのショベルで横込み、32 t積ダンプトラックで破砕プラントまで運搬した。切羽は最大4個所確保し、1万m³日以上の切取りを行えるよう重機（4セット）の配置を行った。使用した重機は表-1のとおりである。

(3) 破砕設備

破砕設備は埋立土の最大粒径を埋立後の諸工事の関係から150 mm以下とするために設置するもので、ベルトコンベヤの土砂供給地点でST ジョークラッシャにより破砕し、能力は4系列で合計2,800 t/hr を確保した。

ダンプトラックで投入された原石は振動グリズリーで土砂と岩に選別し、さらに岩はジョークラッシャで150 mm以下に破砕する。選別、破砕された土砂は引出しコンベヤでサージバイルに貯蔵する。破砕設備の一覧は表-2のとおりである。

(4) サージバイル

サージバイルは破砕プラントとベルトコンベヤを設備的に分断する目的とストック量として約4,500 m³を確保するもので、ベルトコンベヤの起点に設ける（表-3参照）。

表-1 使用重機一覧表

<table>
<thead>
<tr>
<th>用途</th>
<th>機械</th>
<th>型式</th>
<th>メーカ</th>
<th>台数</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>破砕</td>
<td>ブルドーザ</td>
<td>D-16</td>
<td>キャンプラー</td>
<td>1</td>
<td>87 t, 710 PS</td>
</tr>
<tr>
<td>伐採機</td>
<td>ブラック</td>
<td>D-9</td>
<td></td>
<td>1</td>
<td>4 t, 416 PS</td>
</tr>
<tr>
<td>伐採機</td>
<td>ブラック</td>
<td>D-7</td>
<td></td>
<td>1</td>
<td>21 t, 403 PS</td>
</tr>
<tr>
<td>伐採機</td>
<td>ブラック</td>
<td>D-4S5</td>
<td>小松製作所</td>
<td>1</td>
<td>78 t, 620 PS</td>
</tr>
<tr>
<td>伐採機</td>
<td>ブラック</td>
<td>D-356</td>
<td></td>
<td>2</td>
<td>91 t, 410 PS</td>
</tr>
<tr>
<td>整地</td>
<td>マイクロローラ</td>
<td>992 B</td>
<td>キャンプラー</td>
<td>1</td>
<td>7.7 m³, 608 PS</td>
</tr>
<tr>
<td>整地</td>
<td>マイクロローラ</td>
<td>988 B</td>
<td></td>
<td>1</td>
<td>5.4 m³, 380 PS</td>
</tr>
<tr>
<td>整地</td>
<td>マイクロローラ</td>
<td>H-400</td>
<td>小松製作所</td>
<td>1</td>
<td>8.4 m³, 580 PS</td>
</tr>
<tr>
<td>整地</td>
<td>マイクロローラ</td>
<td>UH-20</td>
<td>日立建機</td>
<td>1</td>
<td>3.2 m³, 300 PS</td>
</tr>
<tr>
<td>サージバイル</td>
<td>サージバイル</td>
<td>769-B</td>
<td>キャンプラー</td>
<td>7</td>
<td>32 t 構, 421 PS</td>
</tr>
<tr>
<td>サージバイル</td>
<td>サージバイル</td>
<td>769-C</td>
<td></td>
<td>3</td>
<td>32 t 構, 456 PS</td>
</tr>
<tr>
<td>汎用機</td>
<td>キャンプラー</td>
<td>HD-300</td>
<td>小松製作所</td>
<td>2</td>
<td>32 t 構, 405 PS</td>
</tr>
<tr>
<td>散水車</td>
<td>散水車</td>
<td>MG-500</td>
<td>三菱</td>
<td>1</td>
<td>8 t</td>
</tr>
</tbody>
</table>

表-2 破砕設備一覧表

<table>
<thead>
<tr>
<th>名称</th>
<th>仕様</th>
<th>寸法</th>
<th>速度</th>
<th>力力</th>
<th>台数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST ジョークラッシャ</td>
<td>48-60</td>
<td>1,200 mm x 1,200 mm</td>
<td>CSS 115 mm</td>
<td>430 t/hr</td>
<td>2</td>
</tr>
<tr>
<td>ST ジョークラッシャ</td>
<td>60-48</td>
<td>1,560 mm x 1,200 mm</td>
<td>OSS 150 mm</td>
<td>408 t/hr</td>
<td>2</td>
</tr>
<tr>
<td>特重連動フィード</td>
<td>7-18</td>
<td>2,130 mm x 8,450 mm</td>
<td>700 t/hr</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ベルトコンベヤ</td>
<td>B=1300</td>
<td>L=47 m</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

表-3 サージバイル設備

<table>
<thead>
<tr>
<th>名称</th>
<th>仕様</th>
<th>寸法</th>
<th>速度</th>
<th>力力</th>
<th>台数</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPH 500 B</td>
<td>1,300 mm x 1,650 mm</td>
<td>500 t/hr</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>RPH 500 B</td>
<td>5,600 mm x 5,300 mm</td>
<td>700 t/hr</td>
<td>700 t/hr</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

図-4 破砕設備断面図

図-5 ベルトコンベヤ設置平面図
（5）ベルトコンベヤ
メインコンベヤの総延長は約1.7kmで、土取場から埋立地に至るルートは市街地を避けて丘陵地に設置し、縦断上から2個所の受付部を設けて3本のコンベヤとした（図-5参照）。また地形および騒音公害の面から図-8の3タイプを使用した。ベルトコンベヤの配置は図-7のとおりである。No.2コンベヤについては特に民家の直上を通過することもあり、ギャラリータイプのコンベヤフレームと防音板の取付け、床面はアスファルトを敷設し、ローラは特殊ゴムラッキングタイプを使用した。直下での騒音は暗騒音（約50〜55dB）内に入っていた。
ベルトコンベヤの仕様は表-4に示す。

（6）埋立工事
埋立工法は様々検討した結果、移動式コンベヤ方式によるプルコン工法を採用した。このプルコン工法はベルトコンベヤフレームにクローラを装着し、施設横行縦行作業を自由に行う。また連続的に土砂積層作業を止めずに埋立工事が施工できるよう開発されたものである。メインコンベヤから連絡コンベヤで受け継ぎ、シフタブルコンベヤ（AT、AS）で移動、先端部でスプレッダで押上げ出し、プルボアで押土整地する。今回採用したプルコン設備は表-5のとおりである（図-8参照）。
今回のプルコン設備の活用にあたり特に検討を加えた方法に縦行埋立がある。これは護岸に吊り下げた築堤を施工する場合に行うもので、ATコンベヤ（トリッパ付）の先端にASコンベヤを配置し、先端のスプレッダでまき出すものである。

4．運転管理および制御方式
当工事では土取り、運搬、埋立の連続作業に対し、各作業機械が効率よく稼働できることが最大のポイントとなる。したがって、種々の効率アップの方策を講じた。破砕プラントとメインコンベヤとの作業を分断し、管理区分を設けるためメインコンベヤ供給点にサーマル

<table>
<thead>
<tr>
<th>表-5 プルコン設備仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>名称</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>連絡コンベヤ</td>
</tr>
<tr>
<td>ATコンベヤ</td>
</tr>
<tr>
<td>ASコンベヤ</td>
</tr>
<tr>
<td>定置式コンベヤ (1)</td>
</tr>
<tr>
<td>定置式コンベヤ (2)</td>
</tr>
<tr>
<td>スプレッダ</td>
</tr>
</tbody>
</table>

図-6 ベルトコンベヤ構造図

図-7 ベルトコンベヤ縦断図
図-9 マイコンによる自動管理システムフロー図
（ストック量 4,500 m³）を設置した。

運転操作は、破砕プラントについては各系列ごとに操作室を設け、フィード、クラッシャ、引出しコンベヤの集中管理を行い、メインコンベヤは土取場のサージバイル付近に中央コントロール室を設置。No. 1〜No. 3 コンベヤの運転とサージバイル部の土砂供給用電磁フィードの操作を行った。また、ブルコン設備は埋立地内の連絡コンベヤ上にコントロール室を設けてブルコン設備全体の集中管理を行った。メインコンベヤとブルコン設備
はすべて運転させ、一連の制御方式をとった。
設備全体の効率アップをはかるため機械の稼働状況を
逐一把握し、問題箇所については原因を分析し早期に対
策を講じること。メンテナンスの目標を計画的にとらえ問題
点を予知する技術を身につけることが最大の課題であ
るとの考えから、マイクロコンピュータ（以下「マイコン」
という）を利用するシステムを開発し、主としてダンプトラックの自動運行管理とペルコンベヤの重量計測を行った。マイコンによる管理システムフローを前頁の図-9に示した。

（1）ダンプトラック自動運行管理
ダンプトラックの運行状況を自動的に記録するもの

図-10 ダンプトラック自動運行管理システムフロー図

で、間欠的に土砂を切出している切羽における重機の稼
働状況を把握できるようになっている。この目的は土砂
供給のポイントである積込機械（ショベル）を効率よく
使用し、最大限に能力を発揮させようとするもので、日
々の各ショベルの稼働状況をデータとして取り、累積
み、運搬の重機の組合せをより合理的にしようとするも
のである。

ダンプトラックには、1台ずつショベルとの組合せに
応じた番号をあらかじめ与えておき、トラックの運転手
は、ショベルが代わりに運転席にセットした設定器に
より番号をセットする。このトラックには設定器とともに
発光器も搭載されており、発光器から出る赤外線信号
（9,600 Å）が固定点である受光器の前を通過すると光
が検知され、端末制御器で増幅し、記録装置である管理
機器（マイコン EX-10）にインプットされる。また同
時に通電時刻、車番、ゲートナンバーがプリンタにアウ
プットされる。この EX-10 の記録を毎日印字した後
疲れナッパ用に印刷、事務所で集計管理装置（マイコン
PC-8001）により再生するとともに稼働時間、土質など
をインプットし、データ処理。このシステムフロー
は図-10 のとおりである。

なお、集計の際の処理土量（ダンプトラックの実積載
量）についてはペルコンベヤの計量器の量をより割出し
て決める。事務所でのデータ処理の一例を図-11 に示
す。

（2）ペルコンベヤ輸送量自動計測
メインコンベヤの運行状況を自動的に記録するもの
で、管理装置などはダンプトラック自動運行管理装置と
同一のものを使用している。この目的はペルコンベヤの
30 分ごとの輸送量を記録することにより前述のダン
プトラック、ショベルなどの処理量を相関でとらえるだ
けでなく土量としてとらえることで、ペルコンベヤの
起動、停止時刻を記録することにより停止原因の把握、
改善に役立てようとするものである。

ペルコンベヤの輸送量はコンベヤにセットされた荷

図-11 システムプリンターの一例「ウンバンニッパ」の一部
重検台地と速度検出器と測定計によって計算され、中央コントロール室に同一日累計および当初からの累計輸送量として表示される。この測定計およびベルコン操作スイッチと EX-10 をつなぎ、30 ごとの輸送量と停止、起動の時刻を記録し、さらに事務所で停止原因をインプットし、集計する。なお、このシステムフローは図-12 とおりである。

事務所での計測装置より直ちに図-13 のような日報をプリントアウトし、作業の状況をスピーディに把握でき、また月ごとの記録として図-14 のような月報を作成し、故障分析として図-15 のようなリストを打ち出すものとした。

（3）管理実績

以上に述べた管理データより日々の現場管理に反映させた。特にマイコン活用による機械稼働状況の把握にとらえ、問題点の発見と解決への方策を抽出した。この一例としてベルコン設備を含むベルコンベヤの稼働状況を図-16 に示す。

5. あとがき

御坊発電所の建設工事は昭和 56 年 8 月末より昭和 57 年 4 月 20 日までおよび 8 か月で約 200 万 m³ の
埋立を完了させ、人工島造成工事工程短縮の大きな要因となった。また、工事は無事に進捗を達成させるためにに住民からの苦情は皆無に近く、今後の同種工事に対する多くの方々のご協力をお願いする。
御坊火力発電所人工島埋立工事
土取場全景（面積約31 ha）

ベンチカット発破状況（クローラードリル CD-8によりせん孔。振動軽減のため段発とした）

小割り発破のせん孔（TYCD-10）

超大型ブルドーザ D-10 による掘削

ホイールローダによるダンプトラックへの積込み
サージバイン（最大4,500 м³ 貯留）

土取場より No.1 コンベヤを望む
(コンベヤ能力 3,000 t/hr)

ブロック設備による埋立（スプレッダ、AT コンベヤ）

破砕プラント全景（能力 2,800 t/hr）
土圧バランス式シールド機による
急曲線掘進の実施例
下水道管渠築造工事

松 田 幸 雄*

1. はじめに

市街地道路に施工する下水管敷設工事は、施工に伴う騒音、振動、交通妨害、また隣接家のへの影響補償など問題が多く、この問題解決の住民要望は年々厳しくなっている。
下水道管渠工事の一般的工法として従来から施工してきた開削工法では、施工時の住民協力を得ることができ困難な場合が多く、幹線管渠の施工にシールド工法や長距離掘進工法を採用する事が多くなった。
今回報告する当工事も、下水管の埋設深さ（土線より9.5～10.5 m）に比べ、道路の幅員が4.5～6.0 mと狭く、沿道は病院やスーパーのある住宅と商店の集積地で、国道の横断する交通頻繁な地域であるためシールド工法で施工することにしたが、下水道の計上を避けることができない屈折箇所が5箇所もあってシールド掘進の線形は迂回曲折している。屈折箇所にはシールド機の方向を転換するための洞に穴を設け、水宮の会合点とする。立坑間隔が短いためシールド工事のメリットが少なくなった。
また、埋設物が支障となって交差点内で立坑が構築できないので、シールド機本体を折り曲げることのできる屈折型シールド機（または中折型）を採用し、曲線掘進によってシールド機の方向を転換することとした。今回の施工した曲線の最小曲率半径（R）は10.0 mで、曲線の方向性精度もよく、地下の埋設物や地表への影響をほとんど与えず無事にシールドを掘進させることができたので、その概要を報告する。

2. 工事概要

工事名：宮城県宮城1号幹線下水道築造工事（その4）
工事内容：内径1,350 mm管渠築造工696.0 m（シールド工法、1次装置）
立坑設置箇所2箇所（深さ10.6～13.6 m）
補助工法…立坑部はJSG工、架橋注生工、管路部はCCP工、BH抗工、架橋注生工

3. 地質の概要

施工区域は明治の初期に埋立てた造成地で、全体的な土質は上から粗砂、貝殻砂を含むシルト混り中砂と変わり、その下に0.5～2.0 m層の腐植物を混入したシルトが存在し、以下シルト層である（図1参照）。
シールド掘進位置の土質は砂質シルトで均等係数も13以上で、土圧バランスシールド工法に適した土質である。なお、設計に採用した土質定数は表-1のとおりである。

4. R=10 m 施工の経緯と検討

下水道管渠の設計にあたって、管渠の点検点名の排水系統からの流入箇所として人孔を屈折箇所と設定し、さらに次のように設定するのが通常である。R=10 施工箇所は直角的屈折箇所で排水系統的にも流入管の会合点であることから、なんとか施工の困難性を克服して立坑を構築し、人孔を築造する考え方であったが、移設不可能な埋設物が支障となって、当初計画の分割作業による片側交通の確保ができなくなり、急務R=10 mの急曲線掘進の検討を始める。
シールド掘進機において曲線施工を行う場合、いろいろな手段、方法を講じなければならないが、どの方法が最も確実で理想的であるかは一概に言い得ない。実際に施工し、施工課程の状況を見ないわけられないのが実情である。

一般的にシールド掘進機の曲线施工は、シールドジャッキの片押しにより行い、種々の補助装置によって旋回力を得ながら掘進を行う場合が多い。

より正確に曲线専用を行うためには
① シールド機長を可能なかぎり短くする。
② シールドジャッキの能力に余裕をもたせる。曲線施工はジャッキの片押しにより行うが、シールド機が停止しているときに曲げることはできない。シールドは前述をしながら、わずかずつ曲がるのであって、シールド機を曲線させる推力は地盤抵抗を上回る片押しジャッキの使用で得る必要がある。
③ 施工面で曲线作業を早めに行う。
④ 余振りを先振り
⑤ 曲線施工用補助装置の利用
以上の点に留意し、検討しなければならないと言われている。

当工事は当初から、R=40 m、R=60 m の曲线個所があったため、シールド全体が油圧作動によって屈折可能で、なおかつ曲線に必要な余緩管を減少できる屈折型シールド機を採用することにしていた。

R=10 m 施工に伴うシールド機の構造的留意点と改修内容の主たるものは次のとおりである。
① シールド機長の短縮……テール部のクリヤランスが小さいのでテール内で規定の曲率半径に合ったセグメントの組立てができない。テール部のある後側部を0.22 m、シールド全体では0.18 m 機長を短くした。
② オープネック……おそらくを容易にするため3本オープネックの採用（Y字形配置）／オープネックした土砂の取込みを容易にするため刃先を突き出し、刃先内側をテーブ状にした／オープネックによる増加土砂の機内取込みをスムーズにするためスリット開口率を通常の 20％ 前後から30％ にアップした。
③ 屈折角度、屈折ジャッキストロークの拡大
④ シールドジャッキおよびセグメントの横移動の防止……シールド機の屈折角が大きくなるとシールドジャッキは内側に移動する傾向になり、推力がセグメント内側部にかかわり、セグメントが横移動するとともに破損するおそれがある。また、シールドジャッキ頭部にも横荷重が働き、ジャッキ損傷の原因となる。本工事では緩和策として図-3 の略図で示すようにシールドジャッキ頭部の機械面を過度にしきってシールドジャッキの横移動の偏位を吸収するとともに、スプレッダの作動角度の拡大を計った。
5. 10 R 曲線部地盤改良の検討

シールド掘進においては、通常掘進終了後直ちに裏込み注入を行い、テーブルを充填し、地盤沈下を防止するが、急曲線施工では余韻量が多いため裏込み注入のモルタルが切羽へ流出し、充填されないだけでなく、マンガトラブルの原因となる。このためオーバカット使用中（曲線部施工中）は裏込み注入ができないので、この間の地山が自立する地盤改良の検討を行う。

（1）シールド側部地盤の改良

シールド側部地盤に対しては、ジャッキ推力により地盤反力が生じるので、この際の許容支持力によりチェックする。

\[p = \frac{180}{B \times 1.0} = 84.5 \, \text{t/m}^4 \]

となる。一方、地盤の許容支持力（短期）は

\[q_a = \frac{2}{3} (a \cdot B \cdot N_c + \beta \cdot r \cdot B \cdot N_t + \frac{1}{2} r \cdot D_f D_f N_g) \]

ここに、\(a, \beta \)：形状係数（\(a=1, \beta=0.5 \)）
\(N_c, N_t, N_g \)：支持力係数（\(a=0 \)の場合、\(N_c=5.3, N_t=0, N_g=3.0 \)）
\(B \)：荷重寸法（2.13 m）
\(r \)：土の単位体積重量（1.8 t/m³）
\(D_f \)：シールドの土被り（中心まで）（10.7 m）

\[q_a = 3.53 c + 28.9 \, \text{t/m}^4 \]

の式で表わすことができる。

ここで、地盤改良後の強度を表-2のように決めた改良後の耐力チェックを行うと、

蒸溜注入工による場合

\[q_a = 3.53 c + 28.9 \geq 46.6 \, \text{t/m}^4 \]

となり、耐力不足（NG）

CCP工による場合

\[q_a = 3.53 c + 28.9 \geq 117.1 \sim 134.8 \, \text{t/m}^4 > p_t \]

となり、耐力十分である。

表-2 過去の実績データよりの推算

<table>
<thead>
<tr>
<th>標準力</th>
<th>CCP工法</th>
<th>JSG工法</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準寸法 (土被り)</td>
<td>25-30 kg/cm²</td>
<td>30-40 kg/cm²</td>
</tr>
<tr>
<td>売油対応力</td>
<td>(q_a)</td>
<td>2.5-3.0 kg/cm²</td>
</tr>
<tr>
<td>車検対応力</td>
<td>(q_a)</td>
<td>3.0-4.0 kg/cm²</td>
</tr>
</tbody>
</table>

(a) 推進反力に対する改良範囲の検討

シールドの推進反力が図-5のように分散して伝わると考えると、次式のように改良厚さ \(t \)が必要である。

\[p_t = p_t \times \frac{B_t}{B_s} \quad \text{(t/m²)} \leq q_a = 3.53 c + 28.9 \quad \text{(t/m²)} \]

安全率 \(F_s = \frac{q_a}{p_t} = \frac{27.6}{1.3} = 13 \text{ (OK)} \)

(b) シールド頂部に対する検討

CCP工による改良として、図-6の施工断面をチェック
そのほか、側面土圧に対する改良方法および改良幅をチェックし、改良範囲が民有地に及ぶものは BH 樋に補強し、改良幅を小さくした（図-7 参照）。

6. 施 工

10 R 曲線部の施工性からシールド機テール部を短くしたことから、直進部も R 60 個所と同じセグメント幅の 1 ランク小さい 750 mm を使用した。R 40 個所は 500 mm 幅を使用し、R 10 の急曲線部は幅 250 mm、テーパ量 54 mm（片側 27 mm × 2）の両テーパ型とした。

（1）R 10 個所の施工

BC 反手前 10 m より余隔りを行い、シールド機を外側に移動させながら 5 m 地点で屈折操作を行い、屈折

写真-2 R=10 m のトンネル内部

図-7 10 R 曲線部地盤改良工
角を 2°30' にした。以後、掘進にあわせて屈折操作を行い、BC 点通過 2.0 m 地点で 10°47' に固定し、単線路施工区間に入った。曲線を抜ける場合は入りの対称操作であるが、シールド機の屈折を一度に所定の角度にすることはできないので、曲線の前後には S 字形の緩和曲線が必要である。

当工事では曲線線形の正確を期すため機能とシールド機後部を丸網（幅 19 mm × 2 本）で締結し、屈折ジャッキの効果を高めるようにした。急曲線区間では排土用ベルトコンベアが使用できないので、モーノポンプをセットし、200 mm サクションホースで後方のダリントマまで排土した。後方台車は R 10 m が曲がるようにホイールベースを 1.0 m にし、1 台当たりの台車の長さを 2.0 m に製作したが、曲線側所を連絡して通過させると、引張方向が 45° であるため脱輪し、掘進作業中の後続台車の追従が悪く、後方設備の移動に時間を要した。掘進中の裏込注水は、注水材が前にまわるのを防止しながら注入効果のあがるように急結性のクレーサンド（ゲルタイム 90 秒）を 3 リング後より注入し、急曲線部掘進後直ちに 2 次注入を行った。

7. ありに

初めて経験するシールド工法の曲線施工で、しかも全工事にまだ例の少ない密閉式機械シールド機による R 10 m の急曲線施工は完全にまで気をやるめることができなかったが、慎重な施工の結果、計画どおりの線形で無事完了した。施工後の路面の沈下は直上 5 mm、道路側方 2 mm で、家屋への影響はほとんどなかった。

最後に、この工事を施工した関係者、およびシールド機械を設計、製作した日立造船の直接担当された各位に深く感謝の意を表します。
1. まえがき

番の州高架橋は図-1に示すように本州四国連絡橋児島・坂出ルートの中の最大の両橋、南側西瀬戸大橋のアプローチにあたる延長約3kmの道路・鉄道併用橋で、その橋脚高さは約40～70mに達する。高架橋の建設地番の州は香川県が昭和39年～46年にわたって造成した埋立地である。地層の構成は堆積土、沖積層、河川層、また風化花巻岩の層で、地層の分布は複雑化しており、高架橋の基礎形式の選定は容易ならざるものであったが、施工性、経済性等を総合的に検討し、リバースセッティング工法による大口径の倒打鉄筋コンクリート杭となった。

図-1 番の州高架橋位置図

本報告は、番の州高架橋の最初の工事であり、技術的にも合理的な施工法を追求するために先駆けて設けられた番の州高架橋下部工事のうち、リバース杭の施工概要を報告するものである。

2. 工事の概要

本工事は一連の番の州高架橋のうち、2P、3Pの下部工を施工するものである。

構造形式のうち、基礎は2P、3Pとも3m、L=37mの場所打ち鉄筋コンクリート杭で構成され、杭体については2Pがフレキシブルな鋼製ラーメン構造で、3Pは鉄筋コンクリート構造となっている。それぞれの工事範囲については、2Pが場所打ち鉄筋コンクリート杭とフーチングおよびアンカーフレームの製作・接付工事、3Pは場所打ち鉄筋コンクリート杭とフーチングおよび杭体の鉄筋コンクリート工事である。

3. リバース杭の施工

（1） 施工仕様と杭の配置

リバース杭の施工仕様は杭径3m、現地盤からの掘削深さ約44m、杭の設計長さ37mで、杭の先端は風化花巻岩中に杭径程度埋入れるものである。杭の数値内訳を表-1に、杭の配置を図-2に示す。

（2）施工手順

施工手順は従来のリバース杭の施工法と変わらない

<table>
<thead>
<tr>
<th>表-1</th>
<th>杭の設計数値内訳</th>
</tr>
</thead>
<tbody>
<tr>
<td>杉名</td>
<td>杭本数</td>
</tr>
<tr>
<td>2P</td>
<td>12本</td>
</tr>
<tr>
<td>3P</td>
<td>24本</td>
</tr>
</tbody>
</table>
が、支持層である風化花崗岩掘削の際に四翼ビットからローラビットに変換した作業が通常行程に追加されたのである。リバース杭の施工順序を図－3に示す。

(3) 掘削機

日立建機 S 480 H型掘削機が使用された。掘削機の仕様を表－2に、掘削要領を図－4に示す。

(4) 掘削ビット

掘削ビットは前述のように堆積層を四翼ビット、風化花崗岩はローラビットに交換して掘削した。図－5に四翼ビットおよびローラビットを示す。

写真－1 リバース杭の施工（掘削と掘削終了杭の鉄筋組込み）

表－2 リバース機（S 480 H）の仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般土質 (N 値 50)</td>
<td>1.0 〜 4.8 m/0</td>
</tr>
<tr>
<td>掘削所定巻土質 (σc = 50 kg/cm²)</td>
<td>1.0 〜 4.5 m/0</td>
</tr>
<tr>
<td>岩盤 (σc = 700 kg/cm²)</td>
<td>1.0 〜 2.2 m/0</td>
</tr>
<tr>
<td>掘削深さ</td>
<td>ポンプ駆動式</td>
</tr>
<tr>
<td>約 100 m</td>
<td></td>
</tr>
<tr>
<td>掘削深さ</td>
<td>ハイドロ駆動式</td>
</tr>
<tr>
<td>約 150 m</td>
<td></td>
</tr>
<tr>
<td>掘削深さ</td>
<td>ドリルビット</td>
</tr>
<tr>
<td>約 250 mm</td>
<td></td>
</tr>
<tr>
<td>掘削深さ</td>
<td>ロータリーハンマー</td>
</tr>
<tr>
<td>約 10 t/m</td>
<td></td>
</tr>
<tr>
<td>掘削深さ</td>
<td>スパイラル割</td>
</tr>
<tr>
<td>約 60 t</td>
<td></td>
</tr>
<tr>
<td>掘削機騒音値</td>
<td>55 kW (オフショアンポンプ)</td>
</tr>
<tr>
<td>約 75 kW (エンジンポンプ)</td>
<td></td>
</tr>
<tr>
<td>掘削方向</td>
<td>ポンプ駆動式, ハイドロ駆動式</td>
</tr>
<tr>
<td>掘削水量</td>
<td>12.6 m³/min</td>
</tr>
<tr>
<td>掘削力</td>
<td>26.1 t</td>
</tr>
<tr>
<td>鉄筋保持方式</td>
<td>静水圧</td>
</tr>
</tbody>
</table>

(5) 主要使用機械

杭施工に使用された主要機械を表－3に示す。

(6) 仮設備

仮設備は、従来のリバース工法と同様に電力、給水設備、沈殿池、廃液池、仮受槽、泥土池、泥水処理設備、
鉄筋・資材置場、仮設道路、建物等の付属設備および施設が設けられた。
このうち主要設備となる沈殿池、底吹池の留意点と諸元は次のとおりである。
(a) 沈殿池

沈殿池は仮2本分のさく孔体積に30%の余裕を見込み鋼矢板（FSP Ⅲ、長さ7.0m）で構築し、2P、3P供用とした。

\[V = \frac{\pi}{4} \times 3^2 \times 43.5 \times 1.3 \times 2 \times 1.3 = 800 \text{m}^3 \]
（b）廃液池
廃液池はコンクリート打設に伴って排出される汚水用ビットで、杭15本のあく孔体積に多少の余裕を見込んだ。

\[V = \frac{\pi}{4} \times 3^2 \times 43.5 \times 1.5 \text{本} = 489 \text{m}^3 \]

沈殿池と廃液池の構造を図-8に示す。

(7) 施工実績
(a) 掘削機械と掘削速度
ずり観察結果とボーリング柱状図を基に作成した地質横断図を各地層ごとに区分し、平均掘削時間と掘削速度を求めたのが図-7である。2Pが3Pに比べて速度が大幅に遅くなっているが、この原因としては、2Pが3Pに比べて
① 粘着性の強い粘性土層が多かった。
② 相対的に泥水比重が大きかったためサクションボンプの揚水能力が低下した。
③ デリバリーションが1m程度高い位置にあった。
等が考えられ、機械条件のみでなく、地質関係、泥水管理、仮設設備の関係によって掘削速度の変動も予想されるが、3Pの値が標準的なものと推定される。

(b) 筑先 Hoover
表-4にリバース杭1本の平均施工時間と

<table>
<thead>
<tr>
<th>表-3 主要使用機械一覧表</th>
</tr>
</thead>
<tbody>
<tr>
<td>機械名</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>リバース掘削機箱体</td>
</tr>
<tr>
<td>回転機械</td>
</tr>
<tr>
<td>ドリルツール</td>
</tr>
<tr>
<td>スケルトニン</td>
</tr>
<tr>
<td>ドリルツール</td>
</tr>
<tr>
<td>バーレックス</td>
</tr>
<tr>
<td>ダイラ式</td>
</tr>
<tr>
<td>ドリルツール</td>
</tr>
<tr>
<td>ドリルツール</td>
</tr>
<tr>
<td>スケルト</td>
</tr>
<tr>
<td>ダブルマインカー</td>
</tr>
<tr>
<td>水中ポンプ</td>
</tr>
<tr>
<td>9"(65mm6)</td>
</tr>
<tr>
<td>11"(90mm6)</td>
</tr>
<tr>
<td>12"(105mm6)</td>
</tr>
<tr>
<td>ポンプユニット</td>
</tr>
<tr>
<td>混合機械</td>
</tr>
<tr>
<td>ダンプトラック</td>
</tr>
<tr>
<td>ローラーベンダー</td>
</tr>
<tr>
<td>後付機械</td>
</tr>
<tr>
<td>混合機械</td>
</tr>
<tr>
<td>ドリルツール</td>
</tr>
<tr>
<td>混合機械</td>
</tr>
<tr>
<td>体内</td>
</tr>
</tbody>
</table>

写真-2 掘削土砂の揚水状況

速度を求めたのが図-7である。2Pが3Pに比べて速度が大幅に遅くなっているが、この原因としては、2Pが3Pに比べて
① 粘着性の強い粘性土層が多かった。
② 相対的に泥水比重が大きかったためサクションボンプの揚水能力が低下した。
③ デリバリーションが1m程度高い位置にあった。
等が考えられ、機械条件のみでなく、地質関係、泥水管理、仮設設備の関係によって掘削速度の変動も予想されるが、3Pの値が標準的なものと推定される。
4. 施工管理

表-6 のリバース杭の施工管理基準（案）により実施した。主な項目の管理状況は次のとおりである。

(1) 水素の管理

主に比重の測定により管理した。この測定結果を表-7 に示す。管理基準値は海水を使用したために一般的な泥水の比重 1.03～1.08 を 1.06～1.10 とした。この値の最小値 1.06 は海水使用のためであり、実際でも掘削時の杭は比重が低く、このため余掘量もかなり大きな値となった。

(2) 杭の掘止め位置の決定

今回の工事ではボーリングデータとコア試料を参照しながら掘削速度および沈殿池における採取ずりの肉眼観察により掘止め位置を決定した。

表-4 単位作業時間の比率（杭1本当り平均値）

<table>
<thead>
<tr>
<th>項目</th>
<th>作業機種</th>
<th>3P</th>
<th>2P</th>
</tr>
</thead>
<tbody>
<tr>
<td>作業時間</td>
<td>施工時</td>
<td>34.2hr</td>
<td>34.2hr</td>
</tr>
<tr>
<td>作業時間</td>
<td>作業時</td>
<td>46.2hr</td>
<td>46.2hr</td>
</tr>
</tbody>
</table>

注: 表-5 実掘削時間 (T_r) の内訳

<table>
<thead>
<tr>
<th>(T_r)</th>
<th>作業機種</th>
<th>3P</th>
<th>2P</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.2hr</td>
<td>施工時</td>
<td>27.8</td>
<td>30.7</td>
</tr>
<tr>
<td>46.2hr</td>
<td>作業時</td>
<td>66.6</td>
<td>19.3</td>
</tr>
</tbody>
</table>

(3) 打設コンクリートの品質

コンクリートは設計基準強度 f_{c,k}=240kg/cm^2, 配合強度 f_{c}=300kg/cm^2 のものと用いられた。表-8 に品質基準と示方配合を示すが、テストピースの圧縮強度でみる限り満足すべき状態とみられる。また、スランプと空気率はいずれも配合の範囲内で管理されていた。

なお、水中コンクリート打設中の品質管理および打設
表-8 リバース杭の施工管理基準（案）

<table>
<thead>
<tr>
<th>No.</th>
<th>管理項目</th>
<th>作業種別</th>
<th>基準値</th>
<th>管理方針</th>
<th>管理方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>スタンバイ時の鉄筋送下精度</td>
<td>鋼筋工</td>
<td>400mm以下</td>
<td>2方向トランスフェル</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>スタンバイ時の水平送下精度</td>
<td>鋼筋工</td>
<td>±5mm以内</td>
<td>水準測定器</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ロータリテーブルの鉄筋送下精度</td>
<td>鋼筋工</td>
<td>±0.5mm以内</td>
<td>水準測定器</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ロータリテーブルの水平送下精度</td>
<td>鋼筋工</td>
<td>±1mm以内</td>
<td>水準測定器</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>搬送関係</td>
<td>設計値に対する0〜10cm</td>
<td>搬送関係</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>搬送長</td>
<td>設計長に対する0〜15cm</td>
<td>搬送関係</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>搬送点の鉄筋送下精度</td>
<td>鋼筋工</td>
<td>±100mm</td>
<td>搬送関係</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>液状土混入度</td>
<td>液状土指数1.05〜1.10</td>
<td>搬送関係</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>混合体現状</td>
<td>混合体現状1.0〜1.5</td>
<td>鋼筋工</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>混合体の鉄筋送下精度</td>
<td>鋼筋工</td>
<td>±10cm以内</td>
<td>鋼筋工</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>支持地盤崩れ防止</td>
<td>混合体現状1.5〜1.8</td>
<td>設計項目</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>混合体の鉄筋送下精度</td>
<td>鋼筋工</td>
<td>±5cm以内</td>
<td>設計目標</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>鋼筋フック数</td>
<td>設計フック数</td>
<td>設計フック数</td>
<td>設計目標</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>鋼筋フックの鉄筋送下精度</td>
<td>設計フック数</td>
<td>±5cm以内</td>
<td>設計目標</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>鋼筋フックの鉄筋送下精度</td>
<td>鋼筋工</td>
<td>±5cm以内</td>
<td>鋼筋工</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>鋼筋フックの鉄筋送下精度</td>
<td>設計フック数</td>
<td>±5cm以内</td>
<td>鋼筋工</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>混合体の鉄筋送下精度</td>
<td>設計フック数</td>
<td>±5cm以内</td>
<td>設計目標</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>混合体の鉄筋送下精度</td>
<td>設計フック数</td>
<td>±5cm以内</td>
<td>設計目標</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>混合体の鉄筋送下精度</td>
<td>設計フック数</td>
<td>±5cm以内</td>
<td>設計目標</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>混合体の鉄筋送下精度</td>
<td>設計フック数</td>
<td>±5cm以内</td>
<td>設計目標</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>混合体の鉄筋送下精度</td>
<td>設計フック数</td>
<td>±5cm以内</td>
<td>設計目標</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>混合体の鉄筋送下精度</td>
<td>設計フック数</td>
<td>±5cm以内</td>
<td>設計目標</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>混合体の鉄筋送下精度</td>
<td>設計フック数</td>
<td>±5cm以内</td>
<td>設計目標</td>
<td></td>
</tr>
</tbody>
</table>

表-7 液状土混入度測定結果（排水側）

<table>
<thead>
<tr>
<th>施工順序</th>
<th>板No.</th>
<th>比 重</th>
<th>施工順序</th>
<th>板No.</th>
<th>比 重</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3P-1</td>
<td>1.065</td>
<td>2</td>
<td>a-1</td>
<td>1.043</td>
</tr>
<tr>
<td>2</td>
<td>a-2</td>
<td>1.060</td>
<td>3</td>
<td>a-6</td>
<td>1.055</td>
</tr>
<tr>
<td>3</td>
<td>3P-2</td>
<td>1.065</td>
<td>4</td>
<td>3P-3</td>
<td>1.055</td>
</tr>
<tr>
<td>4</td>
<td>3P-4</td>
<td>1.065</td>
<td>5</td>
<td>b-1</td>
<td>1.060</td>
</tr>
<tr>
<td>5</td>
<td>b-2</td>
<td>1.060</td>
<td>6</td>
<td>b-3</td>
<td>1.060</td>
</tr>
<tr>
<td>6</td>
<td>3P-5</td>
<td>1.065</td>
<td>7</td>
<td>b-4</td>
<td>1.060</td>
</tr>
<tr>
<td>7</td>
<td>3P-6</td>
<td>1.065</td>
<td>8</td>
<td>b-5</td>
<td>1.060</td>
</tr>
<tr>
<td>8</td>
<td>3P-7</td>
<td>1.065</td>
<td>9</td>
<td>3P-9</td>
<td>1.060</td>
</tr>
<tr>
<td>9</td>
<td>a-7</td>
<td>1.065</td>
<td>10</td>
<td>b-7</td>
<td>1.060</td>
</tr>
<tr>
<td>10</td>
<td>a-8</td>
<td>1.065</td>
<td>11</td>
<td>b-8</td>
<td>1.060</td>
</tr>
<tr>
<td>11</td>
<td>b-9</td>
<td>1.065</td>
<td>12</td>
<td>b-8</td>
<td>1.060</td>
</tr>
</tbody>
</table>

後の製品については検査ができないのでコンクリート硬化後、本四公団で測定した管理試験により10cmでポーリングの基礎強度を求めた。その結果はいずれも設計基準強度の0.8〜0.9、SSS=50ppm、平均40ppm以下を満足している。

5. 今後の施工に対する考察

リバース工法による施工結果を基に今後合理的かつ安全確実に施工するための留意点について以下に若干の考察を行う。

（1）鈑削機

今回使用した鈑削機に480tの鈑削実績から今後の工事に適用可能な機種を推定する。この場合鈑削トルクが一つの選定条件となるが、今回の実績値が堆積層、風化土壌岩いずれも5t以上であることから、最大トルク5t以上の能力を有する機種が一応の対象と考えることができる。この種類選定にあたっては、装置重量および市街地、経済性等を総合的に考慮して決めるべきである。

ビット形式については、省の州高架橋試験工事で使用したコンポーネントの適用も考えられるが、鈑削機、市
場性等から判断し、花崗岩層に機械を用いた 4P と 25P 間は今後の工事で用いたボーリングビットとローラビットの組合せによる施工を想定するのが得ないと考えられる。

(2) 孔曲り

孔壁側断面における地質別の孔断面の傾斜をみると、湖沼、湖沼層が一部鉱直に掘削されたのでに対し、支持層となる粘性土質層に入ると孔曲りが生じる傾向がある。支持層内の孔曲りは、地質の状態と掘削方法（ビット、ビット形状、ビット荷重、回転数）によって生じるので今後の掘削では慎重な検討が必要である。

(3) 振止め位置の決定方法

今回の工事ではボーリングデータを参照しながら掘削速度および掘削りの手足観察により振止め位置を決定した。しかし、この方法は監視官の個々が示すことおよび振止め位置の決定に対する客観的なデータがないことが問題である。この点に関し設計図に示す長さを完全に掘削することを一つの方法であるが、風化層面の不均一性を考えると硬岩 (Cm と Cr) の掘削が生じ、その場合の時間および鈍削の効果は好ましくないと考えられる。そこで、施工調査結果において提案されたが、振止め位置が岩石面に強い相関があることを利用して一定の掘削条件でさく孔の掘削速度からその孔径の強度を評価する方法である。すなわち、岩石強度以外の要因であるさく孔径、孔径とそれによって得られるさく孔径密度を用いて別に得られている公式からさく孔径強度を求めるものである。この場合の強度は、孔径強度や引張強度を同様に kg/cm² の単位を有するが、これらの強度とは区別して特にさく孔径強度と呼んでいる。さく孔に関する最も重要かつ多岐を経くさく孔径公式について詳述は次式を提案した。

\[R = K \cdot S^n \cdot B^{1.1} \cdot W \cdot D \cdot (m/hr) \]

ここで、
- さく孔径 (m/hr)
- K：ボリューム定数 (160 〜 200)
- B：ビット回転速度 (rpm)
- W：ビット推力 (t)
- S：さく孔径 (kg/cm²)
- D：さく孔径 (m)
- \(H \)：強化したカッタの摩擦力（8 分法による摩擦力 2.8 から \(H = 0.2 \) とする）

(1) 式のさく孔径 \(R \) に実験値を用いると、さく孔径 \(S \) は次式より求めることができる。

\[S^n = K \cdot R \cdot B \cdot W \cdot D \cdot (m/hr) \]

なお、上式はツース型ローラビットの適用式である。施工調査では、施工完了後の発掘岩盤の支持力度を確認するため下記荷重試験を行った結果、極限支持力 750 t/m² 以上確保するにはさく孔径 \(S = 200 \) kg/cm² 程度以上がよいとの結果を得た。したがって、今後の振止め位置の決定は図-8 に示す掘削条件でさく孔径強度を管理すればよい。

さく孔径の管理方法としては、掘削速度、ビット荷重、ビット回転数を測定すればよいが、掘削速度でさく孔径強度が変動するため、掘削速度に影響を及ぼす要因、すなわち、地質状況の確認、サージョンポンプの揚水能力等の管理が重要である。

8. あとがき

この施工調査結果により引き続き発注は予定されている工の最終架橋下工事の残り 0.5 程序の設計・施工計画および施工管理に対し重要な資料が得られた。本工事は昭和 55 年 5 月から 10 月にかけてリーフスの、吹でフーチング工を昭和 55 年度末に完了し、5 年間からジャパンフォーム工によるスライド型に使ったコンクリート打設が行われ、3 P の軽体部の施工は昭和 57 年 6 月に無事終了した。昭和 55 年 3 月に着工以来 2 年を越える間の間、重大な事故もなく下記工事が完成したことは、関係各位の研鑽と工事関係者の積み重ねた施工管理によるものであり、本報告をまとめたにあたり深く感謝する次第である。

参考文献
1) 本田広域、建設機械化研究所、「番の川架橋下工事に伴う施工調査（その１）報告書」（昭和 55 年 12 月）
2) 健嶋建設、「番の川架橋下工事施工計画書（案）」（昭和 55 年 4 月）
3) 山本英則、「番の川架橋基礎工事（上）」「基礎と基礎」（昭和 59-6）
4) 建設省土木研究所機械施工部施工研究室、「大口径製孔機械の削孔性に関する研究」土木研究所資料第 1310 号（昭和 53 年 3 月）
随想
トンネルの切手
藤井 浩

世界で最初の切手は、1840年英国で発行された1ペニイ切手で、ヴィクトリア女王の肖像が描かれている。その後世界各国で発行された切手総数は30万種に近く、建設工事、トンネル、橋梁の架設など、私の土木技術者に関心の深い切手も相当数発行されている。私の取引した切手コレクションの中で、アルプスの鉄道トンネルの切手を紹介してみようと思う。

“サンゴタールドトンネル”

サンゴタールドトンネルはスイスとイタリアの境界にあるサンゴタールド峠を貫く延長14,984mの鉄道トンネルで、1882年完成している。1932年5月、トンネル完成50周年を記念した3種の切手が発行されたが、10C切手には建設功労者のルイ・ファーブルの肖像が描かれている。

ルイ・ファーブルは1826年デンマーク生まれで、スイス各地の土木工事に参加していた。1872年トンネル工事が計画されたとき、ルイ・ファーブルはトンネル建設工事の請負業者に指名された。トンネル請負契約の特色として、トンネル契約が単価契約でなされたこと、トンネル工期は8年と定められ、工期短縮にはプレミアムが支払われる代わりに、工事速延に対しては罰金を課すという契約であった。

アルプスの地柄による高温労と山ばれのために工事は難航したが、ダイナミクスが全面的に使用され、圧縮空気削岩機も使用されるなど、モンスニートンネルで経験された新技術が導入されている。

工事推進に心血を注いだルイ・ファーブルは、トンネルの完成を待たずに1879年7月19日に、トンネル坑内で脳卒中のため病死している。彼の遺体はトンネルの北口でシベーネの教会に葬られ、いまなおトンネルを通じはる列車を見守っている。この切手を眺めるたびに、100年前に15キロの長大トンネルを完成させた技術力とルイ・ファーブルの業績が偲ばれる次第である。
“シンプロントンネル”

シンプロントンネルはスイスとイタリアの国境であるシンプロン峠を通る19,823mの単線併列鉄道トンネルで、最初のトンネルは1906年完成している。

1956年5月、スイスとイタリアではトンネル開通50年を記念して、シンプロントンネルを描く切手を発行している。

シンプロントンネルスイス方坑口（ブリック）トンネル開通50年記念（1956年、スイス連邦）

シンプロントンネルは世界最長鉄道トンネルの座を守りつづけてきたが、本年11月の上越新幹線開業により大清水トンネル（22,230m）に世界1位の座を譲りわたすことになる。

トンネルの掘削に当たって、本トンネルから17mの離隔を持って補助トンネルを併進して水抜トンネルに使用し、後日続行される複線化工事では補助トンネルを拡幅して本トンネルに使用している。トンネル坑内温度は摂氏50度を超え、最大湧水量も毎秒70m³に達するなど難工事の連続であったが、8年の年月を費やして最初のトンネルが1906年開通した。

“ユングフラウ登山鉄道”

スイスのユングフラウ（標高4,158m）には、二つの登山鉄道を乗り継いで山頂付近に到達することができる。ユングフラウ

鉄道はクライネ・シャディックからユングフラウ山頂駅（標高3,454m）に至る9.3キロの鉄道で、そのうち7.1キロは、ヒガザ直下にトンネルを掘進しており、世界一高い運賃の観光鉄道となっている。

1896年、アドルフ・グーフェラーが工事を計画し、16年の歳月を費やして1912年に完成した。トンネル区間に3駅が設置されており、横坑トンネルを通って山腹の展望台に連絡している。

アルプスを貫ぬくトンネルは19世紀初めまでに完成したものが多く、その後建設があまり行われなかったが、1980年にはサンゴナルド道路トンネルが完成し、冬期の自動車交通の安定化に大いに役立っている。また、ツェルマットとサンモリッツを結ぶ新氷河特急が、フルカ峰に掘削された延長15キロの新トンネルを使用して、本年から運行が開始されている。

思いつくままに拙文を稿したが、現在建設中の青函トンネルが完成し記念切手が発行されることを鉄道切手収集家として待望している次第である。

FUJII Hiroshi
本協会常務理事
日本国有鉄道建設局線増課長
ロータリショットクリートシステムによる
小断面トンネルの吹付工法

1. はじめに

トンネル工事での NATM の急速な普及に伴い吹付工
事の粉塵対策が種々考案実施されている。しかし、大断
面用に用いられている吹付法は直径 2〜4 m 程度の小断
面トンネルに使用するには、粉塵の低減や作業の安全
性等の改良が必要である。このため圧縮空気の使用せ
ず、遠心力でコンクリートを吹付けるシステムでの開発
実用化を大成建設の技術協力のもとにリプロエンジニ
アリングと技術資源開発で好成績をおさめた。

本稿では新吹付工法である「ロータリショットクリー
トシステム」の実施例をもとに、機械の構造、使用方
法、吹付コンクリート性能などについてまとめた。

2. 開発の経緯

小断面トンネルの吹付改善について各種のエア圧送方
式で吹付実験を行ったが、粉塵や施工性、安全性等の面
で問題点が多く、他のシステムの開発を進めることとな
った。このため次の点を着眼点として開発に取組んだ。
① 粉塵防止のため圧縮空気を使用しない。
② 安全のため吹付ノズルを長さのシステム。
③ 機械装置がコンパクトであること。
④ 吹付性能が良好であること。
⑤ 工事費の低減がはかること。

上述の目的のため遠心力による吹付システム（ロータ
リショットクリート）を考案し、試作機の製作と実験を
重ねた。

写真１ ロータリショットクリート

昭和 56 年 7 月、モルタル圧送台車と骨材切出し台車、
およびロータリ吹付台車の 3 両組成で吹付ける方式を発
表した。この方式はモルタルと砂、砂利、急結剤の混合
材を 2 種類で輸送し、ロータリ吹付台車で吹付けるもの
で、6〜8 m³/hr の吹付能力がある。

ついて昭和 57 年に入り、さらに高層化をねら
って 1 系列式システムへと改良をはかり、4 月に新山石
灰石地下輸送トンネル工事で現場試験施工を行った。そ
の結果、粉塵がほとんどなく、リバウンド量も少ないな
ど作業環境および品質管理の面から好成績が得られた。

3. 特 長

試験施工の結果、次のような好結果が実証された。
① 粉塵発生がほとんどなく、作業環境が非常によい
……圧縮空気を使用しないためセメント粒子等の分散拡
散がなく、実測値は無換気で 1 mg/m³ 以下と、従来の
湿式吹付、換気有の 10 mg/m³ 内外に比べ大幅に改善さ
れた。

② 安定した品質のコンクリート……低スランプの湿
式コンクリート吹付のため付着がよく、高品質なコンク
リートが得られる。現場実測値は 28 日圧縮強度 300〜
320 kg/cm²。リバウンド率は 15～20% で、従来の 200～250 kg/cm²、25～30% に比べ高品質で付着がよい。

③ ノズルマン不要、安全性の向上……吹付ホースを使用せず、遠隔操作で行うためノズルマンが不要となり、圧縮機起因する事故がなくなるなど安全管理上の効果も大きい。

④ 機械装置のランニングコストが安い。

⑤ 繊維吹付も容易……従来、閉塞の多い繊維吹付も容易にできる。

4. フローチャートと機械仕様

(1) フローチャート

アジェータカーで坑内運搬されたコンはロータリ吹付仕様の定量切出しホッパーで定量切出され、2本のコンベヤで搬送され、スクリューコンベヤで鋼筋コンベヤで吹付けられる。一方、スクリューの中心から液体急結剤がポンプ圧送され、スクリューの撓弾翼でコンクリートと混練され、インベテラで吹付けられる（図-2、図-3 参照）。

坑内で混練しながら吹付する場合の施工次第図を図-4 に示す。吹付施工の範囲（1 施工角度 135°）が自由にコントロールでき（図-5 参照）、支保工内部吹付は支保工吹付用インベレカバーをつけることにより吹付できる（図-6 参照）。

(2) ロータリ吹付台車仕様

機械仕様を表-1 に、全体図を図-7 に示す。

使用電力は圧縮空気を使用しないため従来の吹付に比
石を山元から秩父工場まで運送するベルコンベヤトンネルで、断面は仕上り幅2.6m、高さ2.5mで、吹付は坑口から380m地点を無換気で行った。

施工次第図は図-3のとおりで、坑内で一般の生コン業者がとりまきた生コンをアジェータカーで坑内へ運搬する方式で吹付を行った。写真-2〜写真-5にその状況を示す。

吹付性能は表-2に示すとおり改善となり、工場実験での吹付性能が実証された。吹付サイクルタイムはアジェータへのコンクリート供給から、吹付機の水洗い、坑外搬出を含め2m³で90分、実吹付能力は3m³/hrであった。ミキサ車からアジェータへの供給に25〜30分かかっており、ミキサ車架台のこう配の改善や坑内混練方式をとればその短縮が可能となる。

6. す び

本システムにより吹付作業環境の改善はもとより、トンネル工事施工上の、工期の短縮、コストの低減、施工の

5. 吹付コンクリート性能と実施例

工場の模擬トンネルでの吹付実験後の、試験施工を石灰石産地を含むトンネル工事（第3工区）で行った。このトンネルは秩父トンネルの発注によるもので、石灰石を山元から秩父工場まで運送するベルコンベヤトンネルで、断面は仕上り幅2.6m、高さ2.5mで、吹付は坑口から380m地点を無換気で行った。

施工次第図は図-3のとおりで、坑内で一般の生コン業者がとりまきた生コンをアジェータカーで坑内へ運搬する方式で吹付を行った。写真-2〜写真-5にその状況を示す。

吹付性能は表-2に示すとおり改善となり、工場実験での吹付性能が実証された。吹付サイクルタイムはアジェータへのコンクリート供給から、吹付機の水洗い、坑外搬出を含め2m³で90分、実吹付能力は3m³/hrであった。ミキサ車からアジェータへの供給に25〜30分かかっており、ミキサ車架台のこう配の改善や坑内混練方式をとればその短縮が可能となる。

6. す び

本システムにより吹付作業環境の改善はもとより、トンネル工事施工上の、工期の短縮、コストの低減、施工の
合理化が図れるものと確信し、トンネルポーリングマシンを含む各種の小断面トンネルや圧気中のトンネル、および既設トンネルの補修にも利用できるものと期待されている。

表-2 吹付性能

<table>
<thead>
<tr>
<th>W/C (%)</th>
<th>S/C</th>
<th>S(%)</th>
<th>C (kg)</th>
<th>S (kg)</th>
<th>G (kg)</th>
<th>W (kg)</th>
<th>騒音規制 (％)</th>
<th>空気量 (％)</th>
<th>エヴァンデプログラム (cm²)</th>
<th>粉塵 (mg/m³)</th>
<th>7日</th>
<th>28日</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.0</td>
<td>3.95</td>
<td>80.2</td>
<td>350</td>
<td>1,382</td>
<td>342</td>
<td>172</td>
<td>5</td>
<td>0～1</td>
<td>4.5</td>
<td>15～20</td>
<td>250</td>
<td>320</td>
</tr>
</tbody>
</table>

社団法人 日本建設機械化協会発行図書

（105）東京都港区港黒谷 3-5-8 機械振興会館内 電話 東京（03）433-1501

建設工事に伴う騒音振動対策 ハンドブック A5冊 250頁 +頃価 4,000円 〒350円

オペレータ ハンドブック
「モータグレーダと締め機械」 B5冊 428頁 +頃価 2,200円 〒400円

オペレータ ハンドブック 「エンジン」 B5冊 256頁 +頃価 1,200円 〒400円

建設機械用語 B6冊 326頁 +定価 3,000円 〒350円

橋樋架設工事の積算（昭和56年度版） B5冊 380頁 頃価 4,000円 〒400円

建設機械施工技術検定 テキスト（昭和56年度版） B5冊 396頁 +頃価 5,000円 〒400円

建設機械整備工場一覧表（メーカー・地域別） B5冊 118頁 頃価 1,500円 〒300円

団体会員名簿（昭和57年度版） A5冊 188頁 頃価 1,000円 〒300円

（注）*印は会員割引あり
北陸の砂防事業にかかわる建設機械の開発

岩松 幸雄

1. まえがき

建設事業に対する社会の要請の多様化によって、事業の執行に必要とされる技術も種類変化をたどってきている。これに対応して北陸技術事務所では北陸地方建設局事業の円滑な執行に資するため、技術管理業務として建設技術にかかわる諸問題の解決を図る、いわば建設技術センターらんとしてその努力を続けているところである。

ここではワン・オブ・ゼムとしての砂防事業をとりまく施工環境のなかで、機械化施工を円滑に実施するために、その施工技術の改善、機械の開発等について、北陸技術事務所の主たる課題要因について述べる。

2. 管内の砂防事業をとりまく施工環境

北陸地方建設局管内の直轄砂防事業は7水系、8流域について砂防事業が行われている。これら砂防対象流域は日本の里山と呼ばれる急峻な山岳地帯にあり、地盤の軟弱さも加えて大量の土砂が流出している。一方、これらの流域は国立公園等の指定地帯であることが多く、自然環境保全の要望が高まるなかで、森林の保全、山地荒廃の原因となる行為の制限等その規制が年々厳しくなり、工事用道路等工事の実施に大きな制約が付されている。

このような状況に加え、最近の建設工事の全般的な問題である労務者不足や高齢化に伴う安全管理への配慮等も十分に加味した新しい工法および機械の開発が砂防事業の合理的な執行のために必要とされてきている。

3. 今までに開発導入した建設機械

（1） 砂防ダム用コンクリートポンプ

砂防ダムのコンクリート打設は従来ケーブルクレーンによる工法が多く行われているが、最近ではトラッククレーンによる工法も採用されてきている。ケーブルクレーン工法の場合、架設工事に多くの日数、労力を要するのがともに自然環境を損なうなど問題点がある。一方、トラッククレーン工法の場合、施工現場の築造の確保や構造物の形状によっては作業範囲が限定されるなどの制約も多い。

そこで、これらの工法に加えてコンクリートポンプによる砂防ダムコンクリートの打設の可能性を採るため表1に示す仕様によるコンクリートポンプの開発を行った。

本機の立山砂防工事管内の使用結果では、施工量、輸送距離についてはほぼ目標どおりの成果が得られたが、ときどき起る輸送管の閉塞や配管の移設などで作業性に関問題点が残された。

今後コンクリートポンプを定着させ安定性のある施工機械とするためには、輸送管の軽量化を図るとともに、機械全体に安全性をもたせるなどの検討が必要である。

<table>
<thead>
<tr>
<th>表1 コンクリートポンプ主要諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td>形式</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* IWAMATSU Yukio
建設省北陸地方建設局北陸技術事務所長
う。また、ポンプ施工を進めるなかで使用骨材の最大寸法の検討なども必要であると考えられる。

(2) 無線操縦型トラクタショベル
本機は危険な作業環境における作業員の安全性を確保し、また多目的的に使用することを考慮して開発されたものである。

機械の特徴は、トラクタショベル（1.8 m³）をベースに油圧破砕装置を設け1台で掘削、積込み、小運搬と岩盤および鉄砕破砕作業ができる万能型であるとともに、落石危険個所の掘削処理に必要な外槽板ワークでもある。これにより作業機械としての適用範囲は幅広い。

(3) その他の機械
また、その他の機械として、急坂路に設けられた20tインクライインの開発を進めたほか、ケーブルクレーンの安全機構、コンクリート打設装置の処理機械などについて査定を加えてきた。

4. 現在取組んでいる機械の開発

(1) 建設機械の分割化
機械工事をとりまく施工環境から既存の軌道および工事用道路にかかる制約条件によって建設機械の搬入、搬出には毎年解体、組立が余儀なくされており、これに伴う費用や出力能力に多くの時間を費やしている。

そこで、既存の仕様を基に、技術の改良版を含めた許容寸法制限（幅1.5 m×高さ1.5 m×長さ1.1 m、重量20t）を定め、解体、組立の容易な建設機械の分割化を行うことが可能である。これにより、現在の機械および設備についてその基本構想の検討を行っている。

① コンクリートバント（可傾式ミキサ1.0 m³）の分割化（圖一参照）

② トラクタショベル（ハイドロスタックドライプ方式1.9 m³）の分割化

また、最近の砂防ダム工事では6.0～0.7 m³クラスの油圧バックホイールの分割化を望む声も聞かれている。

(2) コンクリートの締固め機械
砂防ダムのコンクリートの締固めは人力によるバイブ
油圧式トラッククレーンの操作装置における
誤操作要因の調査結果とその対策試案

尾崎 英作

1. まえがき

建設機械による労働災害の防止は、建設機械そのものの安全性をとくに人間との機械系が一体となって円滑に操作されることが必要である。

近年、建設機械の運転室の居住性、操作性、安全性等の機械性能に関する研究、開発は各メーカーともに意欲的に行われ、格差が認められることを進歩している。しかしながら、操作装置の配列、操作方法に関しては、メーカ間で相違しているものもあり、各メーカーとも統一すべきであるという理解はしているものの、誤操作に基づく機械の損傷、死亡事故等は表面化していないので、積極的に具体化が進められているのが現状である。一方、各メーカの操作装置を統一して誤操作につながる要因を極力除去すべきであるとの意見は、労働災害防止の悪の見地から、オペレータをはじめ関係者から指摘されているところである。建設機械安全対策委員会は、労災防止会の要因除去の一環としてこの問題を検討チームに選定し、調査検討を行ってきた。調査検討は、第1段階として油圧式トラッククレーンを対象に、各メーカの操作装置の現状、操作装置の統一化に対する各メーカの見解、操作装置の相違による災害発生との関連および安全装置の保守管理の現状の3点についてメーカとの意見交換、オペレータへのアンケート調査等を行ってきた。その結果をここに紹介する。

2. 操作装置の調査と考察

(1) 操作装置の現状調査

現在生産されている油圧式トラッククレーンの操作装置および安全装置の現状についてメーカー8社にアンケートを行った。

操作装置のうち、単車およびツブの起立、伸縮、旋回の基本操作レバーの配列と操作方向についてまとめたのが表-1であり、クラッチレバー、ブレーキペダル（レバーを含む）、アクセルペダル等の補助操作装置についてまとめたのが表-2および表-3である。

基本操作レバーは、鉄道作業の安全性とレバーの操作性から自動復元方式が主に採用されているが、単車レバーに、他の操作を同時に行ない、作業能率の向上をはかるため位置保持方式を取り入れている機種がその過半数を占めている。

操作レバーの配列は表-1に示すとおり(A), (B), および(C)の3形式がある。なお、そのうち、旋回レバーは各社とも左端の配列に統一されており、また操作方向も各操作レバーともに左方向に統一されている。

補助操作装置について、単車のクレーンと複車クレーンの二つに分類したが、分類の手法として、運転操作に関わるあるクラッチレバー、巻上げレバー、旋回ブレーキおよびアクセルペダルの四つの操作機器の配置をパターン化して分類している。そのため各操作機器の配置は実機と多少異なるものもある。

単車のクレーンの配置分類は2形態であり、複車クレーンは2形態に分けられる。さらに、操作機器の配列、機能および操作方向を加味する9形態となる。これらについて、巻上げレバー、旋回レバー、クラッチレバー、アクセルペダルの配置と操作方向等をみると、前後、左右それぞれで差異があることがわかる。

(2) 操作装置の分類と考察

現在生産されている油圧式トラッククレーンの操作装置を基本操作レバーの配置にまとめたのが表-4および表-5である。単車のクレーンの操作装置は種類
表-1 基本操作レバーの配列と方向

<table>
<thead>
<tr>
<th>形式</th>
<th>基本操作レバーの配列と方向</th>
<th>メーカ名</th>
<th>操作レバーの形態</th>
<th>プレーキ装置の形態</th>
<th>その他装置の形態</th>
<th>ロックの有無</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>左旋回</td>
<td>長さ</td>
<td>側方</td>
<td>ユニック</td>
<td>ナカヤ</td>
<td>①</td>
</tr>
<tr>
<td></td>
<td>右旋回</td>
<td>縮小</td>
<td>側方</td>
<td>住友機械工業</td>
<td>日本ブローブ</td>
<td>〇</td>
</tr>
<tr>
<td>B</td>
<td>左旋回</td>
<td>①</td>
<td>②</td>
<td>③</td>
<td>多田野鉄工所</td>
<td>キヤライ製造所</td>
</tr>
<tr>
<td></td>
<td>右旋回</td>
<td>①</td>
<td>②</td>
<td>③</td>
<td>東急車両製造所</td>
<td>番知製作所</td>
</tr>
<tr>
<td>C</td>
<td>左旋回</td>
<td>①</td>
<td>②</td>
<td>③</td>
<td>④</td>
<td>⑤</td>
</tr>
<tr>
<td></td>
<td>右旋回</td>
<td>①</td>
<td>②</td>
<td>③</td>
<td>④</td>
<td>⑤</td>
</tr>
</tbody>
</table>

「油圧式トラッククレーンの誤操作要因の除去」には当面オペレータの安全教育、特定クレーンの専任乗車、運用管理面での誤操作防止策の策定を進め、将来的には操作装置の統一を実現する必要がある。

操作装置の一例には、①各操作機器が操作しやすい配列、②基本操作レバーの形状と配列、③補助操作機器の形状と配列および操作方向の三つの項目について厳格化する必要がある。

なお、表-8 は操作装置の形状、配列の選定に関してメカ7社にアンケートを行った調査結果であり、表-7 は操作装置の現状および装置の形状、配列の選定に関するメカへのアンケート結果を議題に、メカ4社（多田野鉄工所、加藤製作所、神戸製鋼所およびユニック）と個別に意見交換を行った議論内容の要約である。

3. 操作装置に関する

オペレータへのアンケート

操作装置の形式および配列、操作方向がメカによって異なることによってクレーンの操作性、安全上の問題を抽出するため、昭和56年10月から11月にかけて建設業者16社のオペレータ800名、全国クレーン建設業協会会員141社のオペレータ1,118名に対してアンケートを行った。

アンケートの結果の詳細については紙の関係で割愛するが、誤操作要因および操作装置に関する、操作方向の異なったクレーンを運転したことのあるオペレータのうち、基本操作レバーの別のレバーを操作した、操作方向を間違って操作した、補助操作装置を間違って操作したとする、いわゆる誤操作したことのある者が70％、誤操作してしまう者が83％に達しており、操作装置の配置、配列に関して統一してほしい（88％）としている。
4. まとめ

「まえがき」に述べたとおり、操作装置に起因した死亡事故事例や、あるいは表面化していないものの、操作装置の異常を指揮したことがあるオペレータの70～83％が誤操作をし、誤操作をしそうになった事実をアンケートに回答している。この数値は本委員会のテークミス操作要因の調査検討と対策の必要性を示しており、操作装置の異常は、誤操作による重大災害の可能性が常に潜在していることを意味している。

クレーン作業における誤操作の要因としては、①操作装置に関するもの、②オペレータ自身に関するもの、③作業関係者を含めた作業条件等の要因が個別に複合的に影響し合って発生しているものに分けることができる。アンケートの考察上、②と③についての条件があると仮定すれば、誤操作と経験した度合いが高いのは、操作装置が誤操作になりやすい状態にあるものと考えてよいであろう。

反面、各メーカーにおいては、誤操作に関連のある操作性および使用条件について、油圧装置の改善、油圧装置の操作力の駆動、クライマチックブレーキの連動による操作装置の改善、連続操作の新たな、上手く使用する新装置の設置等を積極的に行っているため、近年、操作を簡易する油圧式トラッククレーンが多く供給されている。そのため特定メーカーのクレーンのみに専任乗車するようなオペレータの管理が可能であれば、誤操作防止対策は②および③が重点課題となる。

油圧式トラッククレーン基本操作レバーの配列は、開発された昭和30年代後期のメーカー3社の基本操作レバーの配列が現在の配列(A)、(B)、および(C)の基本形になったと想定される。この基本形をもとに、オペレータの意図を取入れる等により改良を加え、自社としては最善な操作装置を有するとしている。しかしながら、メーカー全体としては最善なものとはいいえないのが実情である。またメーカーのアンケート結果において、各社が基本操作レバーの配置について「自社の配置が良い」としながらも、原則的には統一した方が良いと回答しているが、このような間隔で操作装置の配置が異なっていることは、誤操作の可能性があるということを認識の別な表現とも受取られるのである。

こうしたメーカー間における操作装置の不一様性が含まれている誤操作の要因は、ユーザサイ
<table>
<thead>
<tr>
<th>基本操作レバー</th>
<th>配列の形式</th>
<th>右記操作レバー配列に使用されている補助操作装置</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>③ ⑤ ③ ⑤</td>
<td>ユニット</td>
<td>① ③ ⑤ ③</td>
</tr>
<tr>
<td></td>
<td>主制</td>
<td></td>
</tr>
<tr>
<td></td>
<td>人</td>
<td></td>
</tr>
<tr>
<td>⑤ ③ ① ⑤</td>
<td>ユニット</td>
<td></td>
</tr>
<tr>
<td></td>
<td>主制</td>
<td></td>
</tr>
<tr>
<td></td>
<td>人</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>① ① ② ③</td>
<td>多田野野工所</td>
<td>① ② ③</td>
</tr>
<tr>
<td></td>
<td>副制</td>
<td></td>
</tr>
<tr>
<td></td>
<td>人</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>③ ⑤ ③ ①</td>
<td>四種製作所</td>
<td>③ ⑤ ③ ①</td>
</tr>
<tr>
<td></td>
<td>副制</td>
<td></td>
</tr>
<tr>
<td></td>
<td>人</td>
<td></td>
</tr>
</tbody>
</table>

（備考）
1. A形式では、日本グレーブルのクレーンと似たネーブルの操作方向が逆である。
2. B形式では、①②のと③④の口がブレーキブレーキおよびクラッチレバーの配列が逆である。③④のと①②の口がクラッチレバーの操作方向が逆である。

ドにとってクレーンの運用やオペレータの乗用管理面で支障となるばかりでなく、信頼性の大きなため全導播の操作装置の基準化は可能である。その結果、全機種の操作装置の形式の統一は重要なことといえよう。

なお、今回の調査検討結果に基づいて好ましいと考える操作装置として委員会が出した試案は次のとおりである。

表-5 基本操作レバー形式と補助操作装置の形式との組合せ

<table>
<thead>
<tr>
<th>基本操作レバー配列の形式</th>
<th>右記操作レバー配列に使用されている補助操作装置</th>
</tr>
</thead>
<tbody>
<tr>
<td>⑤ ③ ① ⑤</td>
<td>ユニット</td>
</tr>
<tr>
<td></td>
<td>主制</td>
</tr>
<tr>
<td></td>
<td>人</td>
</tr>
</tbody>
</table>

事前に検討して、配置、操作方向の統一化を進めると。

① 基本操作レバーの配置。

基本操作レバーの配置と補助操作装置の配置
将来、JIS又は移動式クレーン構造規格に従って全機種に一様を推進されるまでは、下記の②③のいずれかによって統一化を図る。

② 卷上げブレーキ方式別に統一する。
現在の基本操作レバーの配置（A）、（B）及び（C）を、足踏みブレーキ方式の配列と自動ブレーキ方式の配列の二つのグループに分けたが、補助操作装置もそれぞれのグループ分けとなるが、将来の統一化を考慮すると、同様の配置が好ましい。

③ 現在の基本操作レバーの配置（A）、（B）及び（C）を、足踏みブレーキ方式と自動ブレーキ方式とにより、二つのグループに分けたが、将来の統一化を考慮して同様の配列が好ましい。

（備考）：クロスレバーは現在採用されていないが、今後、操作性の改善上油圧式トラッククレーンの適用を
表-6 操作装置の形式、配列の選定に関するメーカの意向

<table>
<thead>
<tr>
<th>設問内容</th>
<th>多田野製作所</th>
<th>神戸製鋼所</th>
<th>神戸製鋼所</th>
<th>住友金属工業㈱</th>
<th>住友金属工業㈱</th>
<th>日本組計</th>
<th>ユニック</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 操作スイッチの配列に用いる理由で決まるか</td>
<td>決定条件、同時制御装置の配置に用いる。</td>
<td>はい</td>
<td>もし必要とする場合に設定する</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>機構によって選定されているものか</td>
<td>全機械が同一配置時に、スイッチ配置が同じ</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>(2) 機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>(3) 機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>(4) 機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>(5) 機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>(6) 機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>(7) 機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>(8) 機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>(9) 機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
<tr>
<td>(10) 機械によって選定されているものか</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
<td>はい</td>
</tr>
</tbody>
</table>

表-6 操作装置の形式、配列の選定に関するメーカおよび委員会の意見

<table>
<thead>
<tr>
<th>検討項目</th>
<th>メーカの意向</th>
<th>委員会の意向</th>
</tr>
</thead>
<tbody>
<tr>
<td>営業面に対するデメリット</td>
<td>(1) 操作装置の配置に要求されるスペルスポートが必要か。配列は効率的に変える結果に影響する。</td>
<td>衛生上の観点で良好か。</td>
</tr>
<tr>
<td></td>
<td>(2) 適用の機械選定に「オペレータの操作装置に対する考え方」による調整が不十分である。</td>
<td>調整が不十分である。</td>
</tr>
<tr>
<td>安全面における問題点</td>
<td>配列が他機械との関係を考慮されるか。</td>
<td>配列が他機械との関係を考慮されるか。</td>
</tr>
<tr>
<td></td>
<td>(1) 自社方式の配列に変更の必要は生じるか。用途によっては変更の必要がある。</td>
<td>配列に変更の必要は生じるか。</td>
</tr>
<tr>
<td></td>
<td>(2) 自社方式の配列に変更の必要は生じるか。用途によっては変更の必要がある。</td>
<td>配列に変更の必要は生じるか。</td>
</tr>
<tr>
<td>技術面における問題点</td>
<td>機械の推進装置の配置に変更の必要が生じるか。</td>
<td>機械の推進装置の配置に変更の必要が生じるか。</td>
</tr>
<tr>
<td></td>
<td>(1) 機械の推進装置の配置に変更の必要が生じるか。</td>
<td>機械の推進装置の配置に変更の必要が生じるか。</td>
</tr>
<tr>
<td></td>
<td>(2) 機械の推進装置の配置に変更の必要が生じるか。</td>
<td>機械の推進装置の配置に変更の必要が生じるか。</td>
</tr>
</tbody>
</table>

(改訂5つ)
<table>
<thead>
<tr>
<th>検討項目</th>
<th>メーカーの意見</th>
<th>委員会の意見</th>
</tr>
</thead>
<tbody>
<tr>
<td>最適な配列決定</td>
<td>広いる、動員、動員探の必要を考慮し、また作業装置の配置が原因となった災害を考慮して、当社が行う配列を考察している。</td>
<td>（注）適合の配列がベースであるとの自負がない。</td>
</tr>
<tr>
<td>統一化への検討</td>
<td>（注）メーカーが直接配列を検討するため、メーカーの配列がベースであると、メーカーの配列を参考にすること。</td>
<td>（注）メーカーの配列がベースであることを考慮して、最終的な配列を考察する。</td>
</tr>
<tr>
<td>別途同様に必要な検討事項</td>
<td>（注）記事の配列は決定的なものであるが、最終的な配列はメーカーの配列を参考にすること。</td>
<td>（注）記事の配列は決定的なものであるが、最終的な配列はメーカーの配列を参考にすること。</td>
</tr>
<tr>
<td>建安装置に関する意見</td>
<td>建安装置の構造を考慮し、適宜配列を考察陣らの倉庫で配列を考察する。</td>
<td>（注）建安装置の構造を考慮し、適宜配列を考察陣らの倉庫で配列を考察する。</td>
</tr>
<tr>
<td>受害事故に関する検討（建物の状態を考慮）</td>
<td>災害（機械事故を含む）の発生の前処置、設定、検査、サービスなどの関係者との確認後、検討を行う。</td>
<td>（注）災害の発生の前処置、設定、検査、サービスなどの関係者との確認後、検討を行う。</td>
</tr>
</tbody>
</table>

表-8 基本操作レバーの配列に関する海外の規格と配列例

<table>
<thead>
<tr>
<th>形式</th>
<th>国名</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>⑥</th>
<th>⑦</th>
<th>⑧</th>
</tr>
</thead>
<tbody>
<tr>
<td>レバー配列</td>
<td>アメリカ</td>
<td>GROVE</td>
<td>LINK-BELT</td>
<td>HYDROCONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>オランダ</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>オーストラリア</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（注）① 一覧表示、② 一覧表示、③ 一覧表示、④ 一覧表示、⑤ 一覧表示、⑥ 一覧表示、⑦ 一覧表示、⑧ 一覧表示

（注）基準操作レバーレーム配列は、日本自動車工業会の資料を基に作成

（注）* は不検討委員会で記載

（注）** は再検討委員会で記載

（注）*** は再検討委員会で記載

（注）**** は再検討委員会で記載
て一層の労働安全教育、技能訓練が必要であり、建設業界における労働災害防止対策上大きな問題である。

5. あとがき

以上、建設業界は建設業界の特性を踏まえた検討について述べたが、建設業界の大企業のうち、それ以外のクレーン等、3点支持式打設機、パワーショベル、ドラッグショベル等は一定の規模果と似た問題がある。これらは設備の搬送作業の大分を人間が行っており、操作ミスの可能性が各作業工程にある。そのため機械の運転時、組立・解体時、回送（運送）時等の一連の作業工程にわたって誤作業になりにくく、関連災害のない機械施工を目的に、上述の機械も含めた建設機械の「操作装置の規格化と統一」が必要である。なお、基本操作レバーの配列については外国においては統一されており、参考までに各国の実状と配列例を表8に示した。

最後に、本調査検討については本適当機械工業会、日本自動車工業協会、油圧式トラククレーンメーカー各社、建設業界安全対策委員会委員の建設業者オペレータ、全国クレーン建設業協会ならびに協会会員とそのオペレータの方々のご協力をいただいたことを付記する。

"奈良侯ダム建設工事の見学会を実施"

* 建設業部会 *

9月21日、群馬県の利根川水系竜川に水資源開発団が建設中の奈良侯ダムの見学会を行った。奈良侯ダムは、利根川調節、新規利水等を目的とした多目的ダムであって、その規模はダム高さ158m、堤体長1,300万m³と日本最大級のロックフィルダムである。

見学会当日は午前11時20分、上越線水上駅前集合、貸切バスで現地へ向かった。参加者は部会員19社51名、事務局1名の合計52名と、当初見込みを大幅に上まわる出席であった。

公団建設業部での概要説明会では、公団の役所長をはじめ、建設副所長、平木課長、施工者の鹿島・熊谷・日本団体建設共同企業体の工藤部長の皆さんから、当事業の調査段階からの進捗、工事の内容、施工に際する機械選等について、パンフレット、図面による詳しい説明をいただいた。当事業が昭和44年から63年までの20年間とする大事業であること、ダムの建設工事で56年から8か年を要すること、で、57年度末で約20％の進捗という大工事である。現在投入の機械もブラッドーやD-10が2台のほか、大型が30台、ホイールローク9台、ダンプトラックは7台余りの台数を含め32台の活発な運転である。最盛況のダンプトラックは4台に換算で70台とのことであった。

施工現場の見学はバスを利用して順次説明を受けながら一巡したが、その広さに見学者一同驚ろかされた様である。ダム本体、洪水吐の開削、栃木川の堆土除去、クラッシングプラントなど仮設施の施設などが最盛期であったが、77千穂ダムトラックが小さく見える感じのダムサイドの広さである。すべての仕事を大型の機械で施工しているので、機械は動いているが人肌はほとんど見えない現場状況であった。

見学の後、事務所で盛りだくさん、機械の運営管理などについて熱心な質疑を最後に午後3時40分、見学会を終え、ダムをあとにした。少々残念であったことは、ダム本体の盛土工事を見ることができなかったこと、そして午後になって小雨模様となったことであった。

見学会に種々のご配慮をいただいた水資源開発団の皆さん、またご面倒をおかけしい鹿島・熊谷・日本団体建設共同企業体の皆さんに厚くお礼を申し上げます。

（兼子 功）
ISO/TC127/SC2 デビューク会議報告

瀬田 卓敏

1. はじめに

ISO/TC127（土工機械専門委員会）はこのところ2年に1回ぐらいのわりで各国で開催され、昨年由東京で開かれ、来年に予定されているロンドン会議を前に議題の多い第2分科委員会（安全性・居住性担当）では、中間会議を1982年6月に開催することが東京会議で提案承認されたので、今回米国アイオア州デビューク市で開催されることとなり、同時に設立ビーチである日本の代表として同会議に出席することになった。

なお、現地において小松アメリカの西田一成氏およびR.H. Stanage氏がオブザーバーとして出席した。

同地はJohn Deere社のフランチャイズとして知られており、人口約7万のアイオア州北部の中小都市である。参加国は米国、英国、西独、フランス、イタリア、スウェーデンのPメンバーおよびカナダがOメンバーとして参加し、さらに欧州のCECE（Committee of European Construction Equipment）が参加し、6月16日～18日の中の3日間、デビューク市のミッドウェー・モータージョナルで行われた。

2. 議事概要

Draft agenda によりハイラー議長とポーシーン事務局長による議事進行が行われ、N240により事務局報告として1年間の SC2 成果報告が行われた。主な審査事項は次のとおりである。

SC2 N 246 低速車の標識
SC2 N 243 公道上公道外の動態装置
SC2 N 247 土工機械の防火装置
SC2 N 240 ADD 1 座席の SIP、SRP について
なお、6月17日午後、John Deere社のデビューク工場見学ならびに視界（Visability）の拡大ストレージャンが行われ、次回はTC127として1983年6月ロンドンで開かれることとなった。

3. 細部説明

3.1 操向装置（SC2 N 241、決議書 No.94）

日本としては米国提案のクラウンコーダを基準とし、西独案の12m半径コースをOn Highwayのみの代替案とすることおよびクラウンコースのスペースを縮小することを提案。西独は同国提案の円周コースが規格の付属書（Annex）となっていてため、これを規格の中に入れる事を要望し、いずれも採択され、DIS

[図一] 米国案（基本規格）

[図二] 西独案（公道内のみ代替案）
3.2 ダンプトラックの ROPS
(SC 2 N 244, デビュー 1, 決議書 No. 98)
ISO 3471 で土工機械の ROPS が規定されているが、
ダンプトラックに適用する案が提出され、今回すなわち
AD-HOC ミーティングでダンプについての要請を検討
した。本会議ではダンプの転倒事故、圧壊の実情につい
て米国に対してデータの要求がなされ、米国は 1982 年
10月 31日までに資料を提出、各国はそれに関係する 1983
年 1月 31 日までにコメントを提示、1983 年 6 月のロ
ンドン会議を目標として DIS 化することとなった。

3.3 油圧ショベル・ブーム下降時安全装置
(SC 2 N 245, デビュー 4, 決議書 No. 95)
油圧ショベルでのとり上げは日本でも労安法で規制さ
れているが、本規格案はブーム回路内に下降制御装置を
設け、ブームホース等の破損時の危険を少なくするのが
ねらいである。日本の意見は、ブームのみならずアーム
シリンダーについても「おじき現象」がないかという点で
あったが、技術的にあり得るか、安全装置がさらに複雑
化することを考えて採択されなかった。細部の技術的論
識のあと、デビュー 4 に記載されている内容につい
1983 年 1 月 31 日までに各国よりコメントを送り、DIS
とすることとなった。

3.4 ブレーキ装置
(SC 2 N 243, デビュー 1, 決議書 No. 98)
日本においても On Highway について TC 127 が取
扱うべきか否かが論議されたので、この問題を持ち出し
たところ、開発途上国にはこうした建設機械の On
Highway の規制についてのガイドラインが欲しいし、
すでに規制されている国ではその国の法規が優先すること
はもちろんであるが、TC 127 としては On Highway
のガイドラインを作っておくべきであるとの結論となっ
た。西独、英国の代表にそれぞれ会議後に聞いたところでは
ブレーキ、操縦装置とも ISO ができれば、将来国家
規格とすることを含めているとのことであり、日本とし
ても保安基準との調和とは別に国家規格として検討すべき
問題と感じられた。

3.5 低速車の標識 (SC 2 N 246, 決議書 No. 96)
原案について各国より多くの訂正依頼が出され、日本
からも標識が右側通行国のみの案となっているので、左
側通行についても配慮すべきことを申し入れた。本件は
事実上書き直しとなるので、1982 年 11 月頃までにまと
めおきして、1983 年 1 月 31 日までに再度コメントを提出
することとなった。

3.6 建設機械の防火装置
(SC 2 N 247, 決議書 No. 96)
本件は英国が TC 127 の Work Item として提案し
たもので、耐火機械、耐火油脂および脱出についての要
求を盛り込んだものである。日本としては機械が火事に
なり、オペレータの安全に問題があった例はあまりな
く、そうした統計を欲しい旨質問したが、特に統計的テ
ータはないとの英国側の回答であった。日本としては規
格として取り上げる必要性についてさらに反論したが、
結論として規格としてまとめることはしばらく控えさせ、
英国が適宜範囲についてのみ提案を行うこととなった。

3.7 影界
John Deere 社において SAR XJ 1901-Draft 6 よ
び西独の提案がデモンストレーションされた。SAR の
方法は現状完全に開発されているとはいえず、西独の鏡
反射方式を Base Document とすることとなり、1982
年 10月 31日までに SC 1、SC 2 に回覧することとなっ
た。

3.8 シートインデックスポイント (SIP)
シートインデックスポイント (SIP) を使うか、シー
トレフレンスポイント (SRP) を使うかについて、
TC 23 製造トラクタが OECD および EEC と協議し、
ISO 583 を適用することが既に承認されている
規則に従い、これにより SIP の適用が製造
トラクタ一部適用される見通しがつくって来たといえよう。

4. まと め
本会議は TC 127 の中間会議として米国で開かれたも
ので、米国、西独は 10 人、英国も 4 人の代表を送り込
んで熱心な協議がなされたが、会議の主導権は多勢であ
る米国 2カ国が握っていた。日本としても主席のほかに
議事をまとめの人、技術的に検討をする人を含め少なく
とも 3 人の代表を派遣する必要を感じた。なお、英
国代表より次回 TC 127 は 1983 年 6 月、ロンドン郊外
Great Malvern で行われる旨発表があった。
騒音対策型機械損料の対象機種

建設大臣官房建設機械課

騒音の発生に対しては、生活環境保全のうえから、施工方法の改良、建設機械の低騒音化等の技術開発が進められており、騒音対策を施した低騒音型の機械がすでに多く開発され、実用化されている。

これらの機械のうち、騒音測定値が一定以下の騒音対策型建設機械については、非対策型との価格差を考慮した率により損料の割増しができることとして、昭和52年度から騒音対策型建設機械損料が設定され、損料算定表により入れられてきた。これを一覧表にまとめたものが後記の表であり、このうち印を付したもののが昭和57年度に新たに追加された機種、規格のものである。

騒音レベルとしては、機械を配置ラインの1レベルの騒音状態における機側から7m離れた前後、左右4点のエネルギー平均値を採用した。また、低騒音型として設定した騒音レベルについては、非対策型と比較して明らかに騒音が低いと感ずることのできる条件として、非対策型より数dB低下していることを前提として市販されている同規格の機種の平均値に3dBの換算値を加え（騒音対策型と称されているものの95%が吸収される）、さらに騒音計の許容誤差を考慮して各機種の騒音レベルの限界とした。損料表に新たに追加される騒音対策型建設機械については、今後も必要に応じて機種を追加し、対象となる製造後についても、騒音レベルの確認、販売台数等の建設機械等損料算定表に採択するための条件の整ったものについては、定期的に機械損料算定表に取り入れていく予定である。

（宮本 浩行）

＜別表＞騒音対策型損料の対象機種

<table>
<thead>
<tr>
<th>型式</th>
<th>メーカ名</th>
<th>型式</th>
<th>機械周量（PS）</th>
<th>機械重量（t）</th>
</tr>
</thead>
<tbody>
<tr>
<td>D155A-1</td>
<td>320</td>
<td>33.2</td>
<td>騒音対策型のもの（92dB(A)以下）の損料は±30%増とする。</td>
<td></td>
</tr>
</tbody>
</table>

(2) バックホール

<table>
<thead>
<tr>
<th>機械</th>
<th>メーカ名</th>
<th>型式</th>
<th>機械周量（PS）</th>
<th>機械重量（t）</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS070SS</td>
<td>0.12</td>
<td>0.25</td>
<td>53</td>
<td>6.8</td>
</tr>
<tr>
<td>YS300S-2</td>
<td>0.25</td>
<td>0.30</td>
<td>57</td>
<td>6.7</td>
</tr>
<tr>
<td>K902A</td>
<td>0.25</td>
<td>0.30</td>
<td>62</td>
<td>6.6</td>
</tr>
<tr>
<td>UH07SS</td>
<td>0.25</td>
<td>0.30</td>
<td>80</td>
<td>6.6</td>
</tr>
<tr>
<td>K25S</td>
<td>0.25</td>
<td>0.30</td>
<td>48</td>
<td>6.6</td>
</tr>
<tr>
<td>PC06SS-1</td>
<td>0.23</td>
<td>0.25</td>
<td>53</td>
<td>6.2</td>
</tr>
<tr>
<td>K25S</td>
<td>0.25</td>
<td>0.25</td>
<td>48</td>
<td>6.6</td>
</tr>
<tr>
<td>MS10S-2</td>
<td>0.34</td>
<td>0.40</td>
<td>83</td>
<td>10.8</td>
</tr>
<tr>
<td>MS500S-2</td>
<td>0.34</td>
<td>0.40</td>
<td>86</td>
<td>11.2</td>
</tr>
<tr>
<td>YS450S-2</td>
<td>0.34</td>
<td>0.40</td>
<td>90</td>
<td>11.0</td>
</tr>
<tr>
<td>HK40S-3</td>
<td>0.34</td>
<td>0.40</td>
<td>83</td>
<td>11.0</td>
</tr>
<tr>
<td>HK40S-5</td>
<td>0.34</td>
<td>0.40</td>
<td>83</td>
<td>11.0</td>
</tr>
</tbody>
</table>

(次頁つづく)
建設の機械化 '82.11

（到達つづき）

<table>
<thead>
<tr>
<th>器名</th>
<th>型式</th>
<th>容量 (m³)</th>
<th>機械出力 (PS)</th>
<th>機械重量 (t)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>久保田機械</td>
<td>KH-40-SS-2</td>
<td>0.34</td>
<td>0.40</td>
<td>83</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>不破機械</td>
<td>HD-400</td>
<td>0.36</td>
<td>0.40</td>
<td>86</td>
<td>11.0</td>
</tr>
<tr>
<td>石川島機械</td>
<td>S-260</td>
<td>0.35</td>
<td>0.40</td>
<td>90</td>
<td>10.8</td>
</tr>
<tr>
<td>0.4m³貯</td>
<td>油圧発注</td>
<td>YS-500</td>
<td>0.39</td>
<td>0.45</td>
<td>86</td>
</tr>
<tr>
<td>石川島機械</td>
<td>K904-BS</td>
<td>0.40</td>
<td>0.45</td>
<td>90</td>
<td>10.8</td>
</tr>
<tr>
<td>小松製作</td>
<td>PC-120</td>
<td>0.39</td>
<td>0.53</td>
<td>93</td>
<td>11.5</td>
</tr>
<tr>
<td>神戸製鋼</td>
<td>K904-S</td>
<td>0.34</td>
<td>0.40</td>
<td>97</td>
<td>10.9</td>
</tr>
<tr>
<td>0.6m³貯</td>
<td>木工機械</td>
<td>MS-180</td>
<td>0.61</td>
<td>0.70</td>
<td>98</td>
</tr>
<tr>
<td>油圧発注</td>
<td>YS-750</td>
<td>0.60</td>
<td>0.70</td>
<td>105</td>
<td>19.3</td>
</tr>
<tr>
<td>石川島機械</td>
<td>UH-07</td>
<td>0.60</td>
<td>0.70</td>
<td>105</td>
<td>18.5</td>
</tr>
<tr>
<td>油圧発注</td>
<td>KH-70-S</td>
<td>0.60</td>
<td>0.70</td>
<td>105</td>
<td>18.5</td>
</tr>
<tr>
<td>石川島機械</td>
<td>IS-67</td>
<td>0.65</td>
<td>0.70</td>
<td>103</td>
<td>19.0</td>
</tr>
<tr>
<td>小松製作</td>
<td>PC-200-1S</td>
<td>0.60</td>
<td>0.70</td>
<td>108</td>
<td>18.5</td>
</tr>
<tr>
<td>住友製機械</td>
<td>5-280</td>
<td>0.60</td>
<td>0.70</td>
<td>110</td>
<td>19.4</td>
</tr>
</tbody>
</table>

ポイント

<table>
<thead>
<tr>
<th>器名</th>
<th>型式</th>
<th>容量 (m³)</th>
<th>機械出力 (PS)</th>
<th>機械重量 (t)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>三木機械</td>
<td>MS-110</td>
<td>0.34</td>
<td>0.40</td>
<td>79</td>
<td>10.8</td>
</tr>
<tr>
<td>油圧発注</td>
<td>TY-45</td>
<td>0.32</td>
<td>0.55</td>
<td>47.5</td>
<td>10.3</td>
</tr>
<tr>
<td>石川島機械</td>
<td>WH-05</td>
<td>0.29</td>
<td>0.36</td>
<td>63</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>石川島機械</td>
<td>CH-400</td>
<td>0.30</td>
<td>0.40</td>
<td>83</td>
<td>10.9</td>
</tr>
<tr>
<td>油圧発注</td>
<td>WH-04S</td>
<td>0.34</td>
<td>0.40</td>
<td>83</td>
<td>10.9</td>
</tr>
<tr>
<td>0.3m³貯</td>
<td>油圧発注</td>
<td>MS-110</td>
<td>0.34</td>
<td>0.40</td>
<td>85</td>
</tr>
<tr>
<td>小松製作</td>
<td>PW-60-5</td>
<td>0.25</td>
<td>0.30</td>
<td>52</td>
<td>6.7</td>
</tr>
</tbody>
</table>

(3) クローラクレーン（油圧ロープ式）

40tブリ

<table>
<thead>
<tr>
<th>器名</th>
<th>型式</th>
<th>機械出力 (PS)</th>
<th>機械重量 (t)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>日立建機</td>
<td>KH-150</td>
<td>152</td>
<td>38.7</td>
<td>相対機械のもの (74 dB(A) 以下) の換算は 8% 増とする。</td>
</tr>
<tr>
<td>神戸製鋼</td>
<td>S400</td>
<td>130</td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td>石川島機械</td>
<td>CH-400</td>
<td>150</td>
<td>40.8</td>
<td></td>
</tr>
<tr>
<td>住友製機械</td>
<td>LS-106</td>
<td>140</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>日本車輌</td>
<td>DH-400</td>
<td>134</td>
<td>39.5</td>
<td></td>
</tr>
</tbody>
</table>

50tブリ

<table>
<thead>
<tr>
<th>器名</th>
<th>型式</th>
<th>機械出力 (PS)</th>
<th>機械重量 (t)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>日立建機</td>
<td>KH-180</td>
<td>152</td>
<td>46.8</td>
<td>相対機械のもの (74 dB(A) 以下) の換算は 10% 増とする。</td>
</tr>
<tr>
<td>神戸製鋼</td>
<td>S500</td>
<td>160</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td>石川島機械</td>
<td>CH-500</td>
<td>160</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td>住友製機械</td>
<td>LS-118</td>
<td>160</td>
<td>46.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) 空気圧縮機（可搬式・ロータリペン・エンジン掛・サイレンを装着）

<table>
<thead>
<tr>
<th>型式</th>
<th>器名</th>
<th>容量 (kg/min)</th>
<th>機械出力 (PS)</th>
<th>機械重量 (t)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0m³/min</td>
<td>北越工業</td>
<td>PDR 70S</td>
<td>7</td>
<td>21.5</td>
<td>700</td>
</tr>
<tr>
<td>3.5m³/min</td>
<td>北越工業</td>
<td>PDR 80S</td>
<td>7</td>
<td>24</td>
<td>775</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5m³/min</td>
<td>北越工業</td>
<td>PDR 90S</td>
<td>7</td>
<td>29</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0m³/min</td>
<td>北越工業</td>
<td>PDR 120S</td>
<td>7</td>
<td>22</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0m³/min</td>
<td>北越工業</td>
<td>PDR 125S</td>
<td>7</td>
<td>22</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0m³/min</td>
<td>北越工業</td>
<td>PDR 175S</td>
<td>7</td>
<td>56</td>
<td>1,300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5m³/min</td>
<td>北越工業</td>
<td>PDR 250S</td>
<td>7</td>
<td>76.5</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0m³/min</td>
<td>北越工業</td>
<td>PDR 600S</td>
<td>7</td>
<td>176</td>
<td>4,800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.5m³/min</td>
<td>北越工業</td>
<td>EC-280V-1</td>
<td>7</td>
<td>270</td>
<td>5,500</td>
</tr>
<tr>
<td>电压 (kVA)</td>
<td>型式</td>
<td>品目名</td>
<td>発電機定格出力 (kVA)</td>
<td>電気機械出力 (PS)</td>
<td>機械重量 (kg)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 10 kVA | 10 | DCA-10 FSS | 10 | 15.5 | 910 | 出力が増加したため、機械重量は15%増とする。
| 15 kVA | 15 | EG 15 S-3 | 12.5/15 | 17.20 | 680 | 容量35 kVA未満 |
| 20 kVA | 20 | DCA-20 SNS | 19.34 | 25.31 | 830 | 35 kVA以上100 kVA未満 |
| 25 kVA | 25 | EDG-25 SN | 25.40 | 35.40 | 1140 | 100 kVA以上 |
| 30 kVA | 30 | EDG-30 SN | 35.40 | 44.53 | 1440 | 79 dB(A) |
| 35 kVA | 35 | SDG 35 S | 40.40 | 54.54 | 1725 | |
| 40 kVA | 40 | EG 40 S | 50.55 | 66.55 | 1950 | |
| 50 kVA | 50 | EDG-50 SN | 55.55 | 75.55 | 2000 | |
| 60 kVA | 60 | EG 60 S | 60.73 | 75.55 | 2500 | |
| 70 kVA | 70 | EDG-70 SN | 70.90 | 90.10 | 2000 | |
| 80 kVA | 80 | EG 80 S | 80.10 | 100.10 | 2500 | |
| 90 kVA | 90 | EDG-90 SN | 90.10 | 110.10 | 2000 | |
| 100 kVA | 100 | EDG-100 SN | 100.115 | 125.130 | 3000 | |
| 125 kVA | 125 | DCA-125 SS | 125.150 | 150.180 | 3000 | |
| 150 kVA | 150 | DCA-150 SS | 150.185 | 200.185 | 3500 | |
| 200 kVA | 200 | DCA-200 SS | 200.200 | 250.240 | 4000 | |
| 250 kVA | 250 | DCA-250 SS | 250.288 | 300.345 | 5000 | |
| 300 kVA | 300 | DCA-300 SS | 300.350 | 370.430 | 6000 | |

（注）*印は会員割引あり
新機種ニュース
調査部会

『ブルドーザーおよびスクレーパー

82-01-01
キャタピラー三菱
（三菱重工業製）
履帯式トラクタ
BD 2 F-FA 80
新機種

けん引主体のトラクタとして開発された本格的農業専用機である。前進12段、後進3段の多段変速で各種作業に最適速度が選べ、スリップや地面のこぼれが少ない温地用広幅カーブアパッケージショーにより安定したけん引作業ができる。低い踏面で農地も練固め過ぎない。大規模農場のブロック作業など作業機の大型化、高速化に対応した高出力で、強化型3点ヒッチや2段切替PTO、豊富な作業機が使える油圧機構採用などで汎用性が高い。

写真1-1 三菱 BD 2 F-FA 80 輸用トラクタ

表1-1 BD 2 F-FA 80 の主な仕様

<table>
<thead>
<tr>
<th>総重量</th>
<th>5,350(kg)</th>
<th>全長×全幅</th>
<th>4.13×1.9(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>円筒体出力</td>
<td>80 PS/2,800 rpm</td>
<td>接地面</td>
<td>1.640 mm</td>
</tr>
<tr>
<td>最大けん引力</td>
<td>48.4(kg)</td>
<td>シャベル的最大荷重</td>
<td>500(kg)</td>
</tr>
<tr>
<td>走行速度 (前)</td>
<td>0.25-8.12 km/hr</td>
<td>走行速度 (後)</td>
<td>0.25-8.12 km/hr</td>
</tr>
<tr>
<td>最大地上荷重</td>
<td>0.29(kg)</td>
<td>最大地上荷重</td>
<td>0.29(kg)</td>
</tr>
</tbody>
</table>

（注）樹高車および（ ）内は樹高車の仕様を示したが、別にシャベルに樹高車300 mm、接地面0.45 kg/cm²、総重量5 tの標準車もある。

写真1-2 石川島 IS-190 油圧ショベル

表1-2 IS-190 ほかの主な仕様

<table>
<thead>
<tr>
<th>IS-190</th>
<th>IS-220</th>
<th>IS-310</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準パッケージ容量</td>
<td>0.7 m³</td>
<td>0.85 m³</td>
</tr>
<tr>
<td>全装備重量</td>
<td>19.0 t</td>
<td>22.2 t</td>
</tr>
<tr>
<td>定格出力</td>
<td>105 PS/123 PS/183 PS</td>
<td>1,600 rpm/1,500 rpm/1,650 rpm</td>
</tr>
<tr>
<td>最大揚程</td>
<td>6,455 mm</td>
<td>6,550 mm</td>
</tr>
<tr>
<td>最大幅</td>
<td>9,720 mm</td>
<td>9,920 mm</td>
</tr>
<tr>
<td>走行速度</td>
<td>3.0 km/hr</td>
<td>3.0 km/hr</td>
</tr>
<tr>
<td>設定能力</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>最大挖掘力</td>
<td>10.0 t</td>
<td>11.38 t</td>
</tr>
<tr>
<td>クローラ全体長</td>
<td>3.92×2.8 m</td>
<td>4.135×2.95 m</td>
</tr>
</tbody>
</table>

（注）シールドの減速・加重を追加して耐久性を増し、パッケット回りの固定式への変更による給油の削減、燃料ゲージ改良など使いやすくなった。

写真1-2 久保田鉄工 KH-28

82-02-01
石川島製造業業
（石川島製造業）
油圧ショベル
IS-190, IS-220, IS-310
新機種

→掘削機械

82-02-21
石川島製造業業
（石川島製造業）
油圧ショベル
IS-190, IS-220, IS-310
新機種

従来からのすぐれた性能を生かしつつ、性能性などの改良に新しい製品として出荷を行った中型シリーズ製品である。運転席を広く、静かな、視野の広いものに一新、内装も改良するとともに、スイッチの操作レバーを採用、全方向ロック付として、操作性と安全性を向上させた。またパッケットシールド部にOリングシールを追加して耐久性を増し、パッケット回りの固定式への変更による給油の削減、燃料ゲージ改良など使いやすくなった。

写真1-3 クボタ KH-28 ミニバックホウ

多様化するニーズに応えて開発された、ドーザーメカおよびブームスイング機構を持つミニバックホウとしては大型の機械である。走行は2段変速で排土作業と移動作業を迅速に行うことができる。
新機種ニュース

度の向上を図っており、専用ボンプで作動する大型ブレードを装備し、揚土・整地を効率よく作業できる。オーガンの防振保持、ボンネット内の吸音材等、各部に低騒音対策を施しており、長時間作業でも疲労が少なく、また都市部で作業も可能である。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>パッケット容積</td>
<td>0.28 m³</td>
<td>0.30 m³</td>
<td>0.32 m³</td>
<td>0.34 m³</td>
</tr>
<tr>
<td>荷積重量</td>
<td>5,200 kg</td>
<td>5,500 kg</td>
<td>5,800 kg</td>
<td>6,100 kg</td>
</tr>
<tr>
<td>定格出力</td>
<td>3PS/2,100 rpm</td>
<td>3PS/2,400 rpm</td>
<td>3PS/2,900 rpm</td>
<td>3PS/3,600 rpm</td>
</tr>
<tr>
<td>瞳点回転半径</td>
<td>2.200 m</td>
<td>2.610 m</td>
<td>3.070 m</td>
<td>3.530 m</td>
</tr>
<tr>
<td>荷積重量</td>
<td>4,140 kg</td>
<td>4,740 kg</td>
<td>5,340 kg</td>
<td>5,940 kg</td>
</tr>
<tr>
<td>瞳点速度</td>
<td>1.8 km/hr</td>
<td>1.8 km/hr</td>
<td>2.0 km/hr</td>
<td>2.2 km/hr</td>
</tr>
<tr>
<td>平板面積</td>
<td>58%</td>
<td>58%</td>
<td>58%</td>
<td>58%</td>
</tr>
<tr>
<td>最大揚力</td>
<td>1,350 kg</td>
<td>1,770 kg</td>
<td>2,050 kg</td>
<td>2,330 kg</td>
</tr>
<tr>
<td>接地圧</td>
<td>0.25 kg/cm²</td>
<td>0.30 kg/cm²</td>
<td>0.35 kg/cm²</td>
<td>0.40 kg/cm²</td>
</tr>
</tbody>
</table>

CAT 953、963 に続く油圧駆動、新デザインによる新シリーズのローダである。リアエンジン搭載で安全性、視界をよくし、ハイドロスタティック方式採用により利便性に即応した車速が得られ、スビンクションも容易にできる。Zバーリーケージ機構のため大きな挙上力（21.17 t）を発揮し、パケットシャーナツール採用、スイングアイド機構、傾斜式足回り等も加えて作業性、耐久性を向上させている。プレスジャッキ付キャブ、エアコン、電子式モニタリングシステムを標準装備し、運転しやすい。

写真5 CAT 973 ローダ

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>パッケット容積</td>
<td>2.8 m³</td>
<td>2.9 m³</td>
<td>3.0 m³</td>
<td>3.1 m³</td>
</tr>
<tr>
<td>配置重量</td>
<td>34,550 kg</td>
<td>38,500 kg</td>
<td>42,500 kg</td>
<td>46,500 kg</td>
</tr>
<tr>
<td>荷積重量</td>
<td>213PS/2,000 rpm</td>
<td>234PS/2,400 rpm</td>
<td>256PS/2,800 rpm</td>
<td>278PS/3,200 rpm</td>
</tr>
<tr>
<td>瞳点回転半径</td>
<td>2,910 mm</td>
<td>3,070 mm</td>
<td>3,230 mm</td>
<td>3,390 mm</td>
</tr>
<tr>
<td>瞳点速度</td>
<td>11.9 km/hr</td>
<td>13.5 km/hr</td>
<td>15.1 km/hr</td>
<td>16.7 km/hr</td>
</tr>
<tr>
<td>平板面積</td>
<td>58%</td>
<td>58%</td>
<td>58%</td>
<td>58%</td>
</tr>
<tr>
<td>最大揚力</td>
<td>1,410 kg</td>
<td>1,770 kg</td>
<td>2,050 kg</td>
<td>2,330 kg</td>
</tr>
<tr>
<td>接地圧</td>
<td>0.35 kg/cm²</td>
<td>0.40 kg/cm²</td>
<td>0.45 kg/cm²</td>
<td>0.50 kg/cm²</td>
</tr>
</tbody>
</table>

クレーンほか

4段ブームで高所作業にすぐれ、最大作業半径も大き
新機種ニュース

大型トラック装着型クレーンである。起動力の大きいビストロントモータの採用により、低速から高速まで安定して作業が行える。アフターレギュレータの強化は高く、中間処理もできるため狭小場所での作業に便利である。4段目ブームの伸縮はクイックローラシステム（実用新案審査中の）の採用でスムーズに行え、ピンの長さはも一端ですみ、短時間にセットできる。

写真6 多田野 TM-20 ZHM

リガと接地台を標準装備しており、アフターレギュレータ機構により左右の作業行為を防ぎ、車体の安定性を確保している。アフターレギュレータは前後、左右に動くクロスジョイント式を採用し、不整地でも安定した位置を保つことができる。

写真7 多田野 TM-45 ZHMSL セルフクレーン

<table>
<thead>
<tr>
<th>表-6 TM-20 ZHM の主な仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>つり上げ能力</td>
</tr>
<tr>
<td>ブーム長さ</td>
</tr>
<tr>
<td>最大地上揚程</td>
</tr>
<tr>
<td>最大作業半径</td>
</tr>
<tr>
<td>基本速度</td>
</tr>
<tr>
<td>準同軸速度</td>
</tr>
</tbody>
</table>

トラック搭載型クレーン TM-45 Z シリーズにセルフローダ機構を付加し、大型トラックの荷役機能の充実を図ったもので、クレーンは2段、3段、4段ブームの3機種がある。積載を安全に行えるように強力なアウト

表-7 TM-45 ZSL ほかの主な仕様

<table>
<thead>
<tr>
<th></th>
<th>TM-45 ZSL</th>
<th>TM-45 ZHSL</th>
<th>TM-45 ZHMSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>つり上げ能力</td>
<td>2.9t×2.9m</td>
<td>2.9t×2.9m</td>
<td>2.9t×2.9m</td>
</tr>
<tr>
<td>ブーム長さ</td>
<td>3.6～6.2m</td>
<td>3.4～4.2m</td>
<td>3.4～4.2m</td>
</tr>
<tr>
<td>最大地上揚程</td>
<td>7.7m</td>
<td>9.7m</td>
<td>12.0m</td>
</tr>
<tr>
<td>最大作業半径</td>
<td>6.0m</td>
<td>8.0m</td>
<td>14.5m</td>
</tr>
<tr>
<td>増上ロープ速度</td>
<td>16m/min</td>
<td>16m/min</td>
<td>16m/min</td>
</tr>
<tr>
<td>アフターレギュレータ</td>
<td>12.4t×2基</td>
<td>12.4t×2基</td>
<td>12.4t×2基</td>
</tr>
<tr>
<td>架装トワーク</td>
<td>6t 以上</td>
<td>6t 以上</td>
<td>8t 以上</td>
</tr>
</tbody>
</table>

82.06.02 日立建機
油圧式アースドリル KH 75 "82.2 新機種"

KH 100-2, KH 126-2 に続くシリーズ機、従来のU106AL機械式アースドリルに替わる小型機で、市街地工事などの狭い現場に好適のものである。可変形型油圧ポンプ搭載のため効率のよい振動ができるうえ、ポンプ出力制御装置により振動の大小にかかわらずパケット回転数を任意に制御でき、精度のよい振動ができる。アースドリル装備状態で卸荷つけ込み等に5tのクレーン作業もでき、64dB(A)/30mと低騒音で居住性もよい。

写真8 多田野 TM-45 ZHMSL セルフクレーン

92.05.12 多田野鉄工所
セルフローダ付ラック搭載型クレーン
TM-45 ZSL, TM-45 ZHSL, TM-45 ZHMSL

写真9 日立 KH 75 アースドリル
新機種ニュース

表-8 KH 75 の主な仕様

<table>
<thead>
<tr>
<th>開設孔径×深度</th>
<th>1.3 m×30 m*</th>
<th>運転</th>
<th>34.7 t</th>
</tr>
</thead>
<tbody>
<tr>
<td>全装備重量</td>
<td>122 PS</td>
<td>2,000 rpm</td>
<td></td>
</tr>
<tr>
<td>パッケージ</td>
<td>正</td>
<td>3.0 t-m</td>
<td></td>
</tr>
<tr>
<td>車転軸数</td>
<td>25/12.5 rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>攀上速度</td>
<td>10.5 t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>車転軸数</td>
<td>1.5 km/hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>クローラー全長</td>
<td>4,280 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>クローラー幅</td>
<td>3,150 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均接地圧</td>
<td>0.75 kg/cm²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ドレン層、軟質シルト層 (N 値 50 以下) では 1.5 m×6、リーマナイト使用で 1.7 m×6 の開設ができ、深さもシステムロッド使用で 36 m となる。

経図機械

62-08-06 酒井重工業 タンバ VT 6

82-7 新機種

長年に培ってきた振動ローラ、振動コンパクタなどの技術と経験を生かして新しく開発された小型振動式経図機である。機械のバランスを重視した設計により低重心で直進性にすぐれ、運転しやすい。またエンジンの動き取り出し直結式、ベルト式に比べて安全性などが高く、内部のオイル潤滑は自動循環式であるためクリアアップも不要であり、分解、組立も容易な新設計を採っている。

←写真-9
酒井 VT 6 タンバ

表-9 VT 6 の主な仕様

自 重	68 kg
全 長	1,000 mm
全 幅	435 mm
全 高	727 mm
最大出力	47 PS, 5,600 rpm
打撃板長さ	330 m/m
打撃頻度	280 m/m
打撃数	500～610 vpm
ストローサイ	30～50 m/m
速度	8～12 m/min

骨材生産機械

62-10-02 川崎重工業 インパクトクラッシャー KIS-1005 ほか

82-8 新機種

これまで多くの開発実績をもつ破砕機のインパクトプレーテーをロータ可逆転方式とし、消費部品の連続運転時間も従来の 2 倍と設定しており、さらに安定した切削粒度が得られるようになった。破砕室も大型化されて処理能

力は 20％アップし、さらに新方式の打撃板構造の採用により投入力 200 mm 程度でも使用できる。ライナ類は種類が少なく日常の保守が容易になるなど、使いやすくとメンテナンス向上に重点をおいた設計としている。

写真-10 川崎 KIS-1310 スーパーインベラ

表-10 KIS-1005 ほかの主な仕様

<table>
<thead>
<tr>
<th>型 式</th>
<th>電動機 (kW×Pole)</th>
<th>処理能力 (t/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIS-1005</td>
<td>30～37×6</td>
<td>21 m/sec</td>
</tr>
<tr>
<td>KIS-1010</td>
<td>55～75×6</td>
<td>25 m/sec</td>
</tr>
<tr>
<td>KIS-1310</td>
<td>75～90×6</td>
<td>30 m/sec</td>
</tr>
<tr>
<td>KIS-1315</td>
<td>110～130×8</td>
<td>21～25 m/sec</td>
</tr>
<tr>
<td>KIS-1615</td>
<td>150～170×8</td>
<td>260～280 m/sec</td>
</tr>
<tr>
<td>KIS-1630</td>
<td>190～230×8</td>
<td>340～375 m/sec</td>
</tr>
</tbody>
</table>

「新機種」の資料提供のお願い

各社で新機種を発表される際、配布される資料を本協会にも 1 部ご送付下さい。「新機種ニュース」掲載への資料いたします。

調査部会
文献調査
文献調査委員会

330 ft ジャッキアップしたプラットフォーム
"Platforms jacked up 330 ft"

Engineering News-Record
June 24, 1982

この施工法の特色は、タワーヘッド部を4個のプラットフォームに分割し、ジャッキアップする点であり、工法を選択した理由として、建設者は施工管理と品質管理を上げている。特にこれらのプラットフォームは重量が880 tから2,310 tとなることから、ジャッキアップ施工となったものである。

現在、工事は4個のプラットフォームのひとつである直径135 ft、厚さ19.8 ftのプレストレストコンクリートの円筒状ヘッドがタワー本体の基礎のまわりで建設され、48個の油圧ジャッキによりジャッキアップされたところである。

タワー構造

鉄筋コンクリート基礎よりスリップフォームされた本体は、直径32 ftの細い円筒状であり、ラメーテータ、階段通路を収納する。本体をコンクリート製にした理由は、アンテナのたわみを制限するために本体をたわみにくい構造としたからである。プラットフォームは重量を軽減するため軽量コンクリートで形成され、16個の放射状の梁でタワー本体に接合される。上部3個の大きなプラットフォームの接合部は鉄筋コンクリートで接合するが、最低部の小さなプラットフォームは径が長であるため鉄筋コンクリートで接合することが実用されている。

ジャッキアップ施工

施工前準備として、タワー本体のまわりに48本のガイドレールが取付けられた。

施工開始時にはこれら48本のレールのそれぞれに一対のジャッキが掛けられ、1形鋼がジャッキの上部に設置される。この1形鋼はプラットフォームの重心を修正する目的と、コンクリート型枠を支持することによりタワー本体への過大荷重を防ぐ目的で使用された。

プラットフォームがジャッキアップされたのも、このこぎり状のエッジを持った放射梁の端が本体の溝の内に固定される。この本体の溝はネオプレンジョイントとなっており、プラットフォームは16個の溝中のフラットジャッキにより支持され、荷重がこれらフラットジャッキ
文献調査

荒れる海に橋をかける

“Bridging stormy waters”

Engineering News-Record
July 8, 1982

3年前の暴風雨により破壊されたシアトル近郊のHood運河橋西側3,800ftの付替え工事が進められている。発注者はワシントン州運輸局であり、2億ドルに及ぶ復旧計画のなかのアンカー、ボンツーン工事として6万000万ドルで発注されたものである。今後、上部構の建設と東側復旧工事が予定されており、完成すれば従来7,131ftの世界最長の潮流上浮橋となり、旧橋に比べ10ft幅広く、50％強度増となる予定である。

このように、過酷な自然条件と構造物の規模の大きさに対処するためアンカーとボンツーンは重量を増加させ、アンカーケーブルは太くする必要があった。

この工事に受注したJones社は、コンクリートアンカーを水中に設下するのに安全と精度のよい工法の開発を行い、成果を上げている。このマスコンクリートアンカーゾーン設定システムの第1の利点としては、作業船を他の構造物から離すことができる。これによりアンカーは二つ

の船体間の梁の中心でつり下げることができ、安定性のよい設置が可能となった。第2の利点としては、28個のアンカーを運河底340ftまで安全に正確に設置するためにエインチ調整にはソナーとコンピュータを連携したシステムが開発されたことであり、このため5ft以内の精度で設置することが可能となった。

このシステムでは制御室から出された音波が運河底に5個、上に2個、アンカー上に2個設置されたレーザーに送られ、作業船上でそれらの反射を水温、塩分、流れ、深さなどの不確定要素がデータとして入力される。同時に、コンピュータはアンカーが運河底に降下する状態を3次元の映像で表示し、正確な位置を指示する。この修正指示はエインチのオペレータに伝達され、オペレータは4個の荷重ブロックと1/2inのケーブルをつり下げる装置を単独に、あるいは連動で操作し、修正および下降を行う。

このような精密なデータに基づく適切な操作は、重量構造物の水中設下において最も重要である“重量の正しい分配”という機能を満足させるのに有効であり、アンカーの水平レベルを1°以内に保つながら設置することを可能にしたのである。

（委員：玉井章友）

作業船中央よりアンカーは340ftの運河底へ設下される

アンカーとボンツーン設置

ウインチのオペレータは制御システムの指示によりアンカー設下作業を行う
ファイバー強化コンクリートは空港舗装に有効であることが実証された

"Fiber-reinforced concrete proves worth for airport pavements"

Civil Engineering-ASCE
May 1982

文献調査

ファイバー強化コンクリートは空港舗装に有効であることが実証された

ファイバー強化コンクリート（以下「FRC」と略す）による空港の舗装化についてFRCの特性、施工法を述べたものである。

アメリカ南カリフォルニアにある二つの空港で新しいタイプのステンレスファイバーを使用したFRCによる空港舗装とクラシックウェイの舗装が施工された。新しいステンレスファイバーは両端が曲げられ、引張り性に優れている。また事前に予め避けられたきりたんに分離してコンクリート中に一緒に分布される。図-1に参照。

図-2にFRCのテスト例を示す。従来のコンクリートに比べ大きい曲げ強度と変位を示している。大きな曲げ強度と疲労強度、衝撃性により舗装厚は従来のコンクリートの1/2～1/3の厚さでよく、さらに目地間隔を25mmから40mmに延ばすことができる。FRCの施工コストは従来のコンクリートと同等であるが、目地におけ

施工上の考慮

骨材の粒度はファイバーとの接着のため細かいものが要求され、最大粒径は1/2inから1inのもののが良い結果を示した。セメント量は骨材が細かいため従来のコンクリートにくらべ多く必要とする。高いセメント量はコンクリートの縮みと施工時の温度に注意しなければならず、舗装法では90°Fに制限された。表-1に配合例を示す。

<table>
<thead>
<tr>
<th>骨材</th>
<th>配合例</th>
<th>(単位: yd³ 当り)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>788kg</td>
<td>82 lb</td>
</tr>
<tr>
<td>フェイバー</td>
<td>41l</td>
<td>空気乾燥面積</td>
</tr>
<tr>
<td>砂</td>
<td>1,267lb</td>
<td>24.0 oz</td>
</tr>
<tr>
<td>#4~200</td>
<td>1,431lb</td>
<td>スラッジ</td>
</tr>
</tbody>
</table>

バッチプラントは通常使用されるものでよいが、混合時間は約2倍必要であり、バッチサイズはファイバーの混合のため80%としなければならない。舗装は通常のスリップフォーム舗装を使用して施工された。仕上げは特別な考慮が必要で、軽いマグネシウムまたはアルミニウムのフロートで仕上げられ、表面に残されたファイバーはマグネシックスイープによって取除かれた。

FRCは耐久性と経済性の点で空港舗装において有効であることが実証された。FRCの高強度を生かすためには目地の施工法と目地材の開発がなされなければならない。さらにFRCの特性を生かして空港のみならず、他方面の利用が考えられるであろう。

（委員：三井 晃）
建設機械の再生，オーバーホール，再組立についての評価

産業界の指導者による再生部品および再生装置に対する座談会

An Evaluation of : Remanufacturing, Overhauling and Rebuilding

Equipment Management / May 1982

産業界では，経済的見地から中古品を使ってトラックや建設機械の主要装置を交換することが増えてい る。このような手法は装置交換と呼ばれられており，交換される装置のほとんどが再組立。オーバーホールあるいは再生されたものであるが，これら には各々相違があるのだろうか。中古市場および取引上の用語ならびに経済性についてより良好理解を得るため業界の指導的立場におられる方々に集まっていただき“再組立”を議題とし て座談会を行った。なお，この座談会への出席者は次のとおりである。

Lyle Schroeder （ユナイテッドディーゼルサービス社）
Joe Bartkiewicz （ジョーバートキーズ社）
Charles Schwartz （チャンピオン部品再生会社）
Bill Provence （ライダーテックレンタル社）
Joe Nelson （ハーバートインターナショナル社）
Roger Yount （ルトルノー販売サービス社）
Bill Smith （カミンズエンジン会社）
Greg Sitek （“Equipment Management”編集長）
司会者：Torn Gelinas （“Fleet Maintenance & Specifying”編集長）

出席の方々はトラックおよび建設機械関連業界の代表であり，Schroeder はシャンガール地域で専業のデトロイトエンジン再組立工場を経営しており，1969 年創業で，年間 1,250 台のディーゼルエンジンの再組立を行っている。Bartkiewicz は，この 25 年間，リース業および運送業において車両整備責任者として活動している。Schwartz はチャンピオンサービス社の社長で，キャブレタからディーゼル噴射ポンプまでの範囲で装置の再組立を行っており，農場や地方市場の自動車やトラックに装置を供給している。

パネリスト：左より Smith, Schwartz, Nelson, Yount, Gelinas, Sitek, Provence, Bartkiewicz, Schroeder

Provence はライダーテックレンタルの社長で，Yount はメンファスで機械やホイールモータの再組立を行っているルトルノー社の子会社ルトロパワーサブスの社長である。Nelson は最近まで 4,000 台の機械を保有して石炭の採掘をやっていたハーバートインターナショナル建設会社の機械担当副社長である。Bill Smith はカミンズエンジンの再生部門でエンジンのマーケティングに従事しており，このように多彩な顔ぶれにより再組立工場，エンジン再組立業者および装置再組立業者ならびにエンジニアに対して意見を披露している。

[EM] 我々の意見交換が地域の運送業界や建設機械を使用している産業界の方々に有益であると信じます。今日の議論の最終目標はオーバーホール，再組立および再生の内容について理解を深めることです。最初に議論したいことはこれらの用語がどのような意味を持っているのかということです。
整備技術

【Nelson】オーバーホールも再組立も同じことだと思います。皆さんが機械のどこかに悪いところがあると気付いたときにお修理します。再生は装置を完全に分解して検査し、元のスペックどおりに復元することです。

【FM & S】それはどんな基準でやるのですか。運用性能ですか。寸法基準ですか。

【Nelson】寸法と性能の両方です。

【Bartkiewicz】私は三つの用語を三つの違う活動領域のものだと思っています。オーバーホールはリーグ、ペアリング、ガスケット等の交換のように補修用機械を使わずにできるシャーシ内での取付調整や部品交換であると思います。
再組立はずリーションヘッド、バルブプレイスおよびバルブシートの調整のように補修用機械により加修を必要とする仕事で、これと同時に新品部品の交換を伴うもので、再生は当然可能な限り元のスペックに近づけることを目的とする仕事です。

【FM & S】車両類をショップで再生できますか。

【Bartkiewicz】弁に1,000万台くらいの大量の弁が確保されていて、ある程度の設備があれば……。

【FM & S】エジンの再生はどれだけ設備が必要ですか。

【Bartkiewicz】それは事業がどれだけ大規模に行えるかによります。燃料电池、冷却システムなどを再組立するつもりですか。それは補修設備の整備が必要でなければなりません。

【EM】Provenceさん、オーバーホール、再組立、再生の三つの違いについてどのように考えていますか。

【Provence】オーバーホールはリーグとペアリングのように単純に交換することです。再組立は補修用機械を必要とし、再生はコンピュータ内部を取り出して作動部品の分解組立をします。最終製品については保証すべきです。

【Schroeder】オーバーホールとは基本的にその時点で必要なものを交換することです。そしてペアリングやシール等の摩耗度の高い部品については大がかりに見直しても交換することです。再組立とは新エジンに同程度の使用時間を期待できるようにすることだと思います。

私は皆さんが経験的にエジンについて再生という用語を本当に適用できるとは思っていません。皆さんエジンの再使用に際してかなりの再生部品を使っています。再生とは新品部品を使い、製造、溶接等の必要な補修を行って元の寸法および仕様に合った性能に復元することです。

【Schwartz】オーバーホールは皆さんが言っているように装置が作動するように調整あるいは修理することです。キットを使ってはよし、ガスケットやペアリング等必要な部品を機械的に交換して組立ててもよいでしょう。基本的には再組立も再生も同じことです。装置を完全にパラして摩耗が原因であったり、経済的に加修ができない部品は交換しなければならないと思います。テストしてみても、適当なパーツを修理するか択えるかのどちらかです。加修されたパーツは新品と同様です。

【Yount】私もオーバーホールに関しては皆さんが言っていることに同意で、洗浄したあとガスケット、ペアリングや明らかに摩耗しているものを交換し、機能的に仕上げることだと思います。再組立とはオーバーホールが少し洗練されたものであると考えます。それには当然ガスケット、ペアリングその他明らかに悪いと思う部品を交換することも含みます。再生についてはまったく元の姿の部品に戻るものです。すべての公差はメーカーで設計された寸法に仕上げます。性能をもっと高く新品と同じで、再生された装置が販売された場合は新品と同様に長期の保証をしなければなりません。

【Schwartz】私も意見を述べたいと思います。Yountさんは私の言いたい点を指摘しています。再組立製品は新品とは明らかに違っていることが第1点です。我々は部品数を抑えておいて顧客が保有していなければならない部品を減らしてやる必要があります。その点を、我々にはOEM製造を発売できることです。言葉を変えれば、部品が破損することによってどこが強度不足であるかを見つけることです。業界内には新品よりも良い製品を作っていると言う人もいます。なぜなら、我々は破損の状態を見付けこれを改良して直すのに価値を使うからです。
整備技術

[Smith] 用語の定義にはいくらかの法的な関係があると思います。大規模なオーバーホールをする代わりに、再生エンジンを購入した場合、あるいは资本投資を計上させて投資税を取り立てられることになります。大規模なオーバーホールでは投資税は取られない。だから、再生は生産活動であると見なされるわけで、そのため低コストを求めるために大きな生産が必要です。また装置は完全に分解する必要がある。そしてエンジンも装置そのものは非行がなくなってしまうわけです。再組立においてはそんなことはないわけです。我々はアフターマーケット diabetesエンジニアリングといい沢山のサービスを取り扱っています。だから私は再生というのは投資であり、資本に比べれば労力は大したものですではありません。再生は廃棄物利用技術、機械工学と集中生産技術を組合せたものであり、装置を元通りのスペックにもどすもので、場合によっては再生装置の方がオリジナルの装置よりも良好なものもあります。

[EM] たとえば私が多量の車両を保有していて、それが壊れ始めたとしたら、私は再組立をすべきか、それとも装置を買って交換すべきでしょうか。

[Nelson] まず第1に我々が着眼するのは耐用時間です。建設業においては大気、景気その他からの変動を受けます。だから考えられた状態によって変わるかもしれません。最も大きいコスト項目は耐用時間であり、大量の交換装置を使う傾向があります。我々は組立業者や再生業者をどこかって再組立をしてもらいます。それには二つの理由があります。1は装置の交換に多額の経費がかかり、2が必要な投資をしてくれることです。もう一つの要因は、再生業者の従業員の方が我々の従業員よりうまく再組立をするからです。数年前になりますが、自家工場でエンジンの再組立ができかどうか調査をしてみた。当時我々の車両は240種類の構造形式の違ったエンジンを搭載していましたので、これのように異なる設計のものを再組立できる人材を見つけ出すことはできませんでした。

[Nelson] 再組立業者が経営を守るための重要な手段となり得ます。仮に私が運輸業者だったら適ったやり方をします。誰かにトラックをリースした場合、彼らは道路を走り通すことを期待しているのです。私たちの整備はもちろんです計算の上に成り立っています。補修は破損する前に交換するようにしています。ウォーターポンプ、発電機、スタータおよび噴射ノズル等の小物は決して外すことのない整備に従って交換しています。ついてに言えば、私どもは自前のスタータや発電機の再組立センターを持っていました。仮に私が定めた以上のマイル数をオーバーして走行したらコアを失ってしまいきます。コアは高価です。コアはもちろんですが、安価な部品を選ぶ必要はなく、長期にわたる整備を選ばれます。

(以下次号につづく)

【著者】英明一

チャップオンインターナショナル再組立会社は農業や地方市場での自動車やトラックに大量の部品や装置を供給

ポチュージャ等の部品についてはどう思いますか。

[Nelson] それらはいつも交換しています。

[Schwartz] コアについては注意していますか。

[Nelson] あまり気を使っていますか。

[Schwartz] 価格はどれほど重要ですか。

[Nelson] 購入価格はあまり重要ではありませんが、長期コストが重要です。

Provence 仮に私が運送業者だったら適ったやり方をします。誰かにトラックをリースした場合、彼らは道路を走り通すことを期待しているのです。私たちの整備はもちろんです計算の上に成り立っています。補修は破損する前に交換するようにしています。ウォーターポンプ、発電機、スタータおよび噴射ノズル等の小物は決して外すことのない整備に従って交換しています。ついてに言えば、私どもは自前のスタータや発電機の再組立センターを持っていました。仮に私が定めた以上のマイル数をオーバーして走行したらコアを失ってしまいきます。コアは高価です。コアはもちろんですが、安価な部品を選ぶ必要はなく、長期にわたる整備を選ばれます。

(以下次号につづく)
建設工事受注額・建設機械受注額・建設機械卸売価格の推移

建設工事受注額（第1次 43 社）（受注高）— 異時調査 (単位：億円)

<table>
<thead>
<tr>
<th>昭和年月</th>
<th>総計</th>
<th>事務別</th>
<th>工事別</th>
</tr>
</thead>
<tbody>
<tr>
<td>総計</td>
<td>36,172</td>
<td>28,773</td>
<td>7,400</td>
</tr>
<tr>
<td>53年</td>
<td>76,938</td>
<td>6,407</td>
<td>29,773</td>
</tr>
<tr>
<td>54年</td>
<td>85,416</td>
<td>8,028</td>
<td>32,947</td>
</tr>
<tr>
<td>55年</td>
<td>90,175</td>
<td>11,166</td>
<td>37,161</td>
</tr>
<tr>
<td>56年</td>
<td>99,837</td>
<td>12,534</td>
<td>40,340</td>
</tr>
<tr>
<td>56年 8月</td>
<td>7,189</td>
<td>3,057</td>
<td>2,880</td>
</tr>
<tr>
<td>9月</td>
<td>8,786</td>
<td>5,037</td>
<td>3,019</td>
</tr>
<tr>
<td>10月</td>
<td>7,545</td>
<td>4,395</td>
<td>2,968</td>
</tr>
<tr>
<td>11月</td>
<td>8,102</td>
<td>4,498</td>
<td>2,687</td>
</tr>
<tr>
<td>12月</td>
<td>8,212</td>
<td>4,468</td>
<td>2,729</td>
</tr>
<tr>
<td>57年 1月</td>
<td>6,703</td>
<td>4,310</td>
<td>2,396</td>
</tr>
<tr>
<td>2月</td>
<td>8,140</td>
<td>4,769</td>
<td>2,678</td>
</tr>
<tr>
<td>3月</td>
<td>8,458</td>
<td>5,097</td>
<td>3,067</td>
</tr>
<tr>
<td>4月</td>
<td>7,418</td>
<td>3,620</td>
<td>2,967</td>
</tr>
<tr>
<td>5月</td>
<td>7,977</td>
<td>4,154</td>
<td>3,060</td>
</tr>
<tr>
<td>6月</td>
<td>7,644</td>
<td>3,868</td>
<td>3,104</td>
</tr>
<tr>
<td>7月</td>
<td>7,499</td>
<td>3,798</td>
<td>2,957</td>
</tr>
<tr>
<td>8月</td>
<td>7,979</td>
<td>4,160</td>
<td>3,169</td>
</tr>
</tbody>
</table>

建設機械卸売価格指数

<table>
<thead>
<tr>
<th>昭和年月</th>
<th>53年</th>
<th>54年</th>
<th>55年</th>
<th>56年</th>
<th>57年 1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設機械</td>
<td>8,108</td>
<td>9,484</td>
<td>10,058</td>
<td>9,434</td>
<td>748</td>
<td>877</td>
<td>753</td>
<td>732</td>
<td>733</td>
<td>703</td>
<td>906</td>
<td>1,064</td>
</tr>
</tbody>
</table>

建設機械卸売価格指数

<table>
<thead>
<tr>
<th>昭和年月</th>
<th>53年</th>
<th>54年</th>
<th>55年</th>
<th>56年</th>
<th>57年 1月</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設機械 (9品目)</td>
<td>108.7</td>
<td>113.4</td>
<td>115.9</td>
<td>118.4</td>
<td>120.0</td>
</tr>
<tr>
<td>製鉄機 (1品目)</td>
<td>111.2</td>
<td>113.1</td>
<td>112.9</td>
<td>115.2</td>
<td>113.3</td>
</tr>
<tr>
<td>建設機械卸売価格指数</td>
<td>120.9</td>
<td>120.0</td>
<td>120.9</td>
<td>120.9</td>
<td>120.9</td>
</tr>
</tbody>
</table>

（注）1. 昭和52年～56年は西暦期の年平均値で表示された。
2. 「建設工事受注額」の折算43社のシェアは約18%である。
広報部会

■シンポジウム打合会
日時：9月6日（月）14時～
出席者：黒田琢磨幹部長ほか7名
議題：昭和57年度建設機械と施工法シンポジウム論文集の内容について

■文献調査委員会
日時：9月7日（火）10時半～
出席者：千田島平委員長ほか7名
議題：機関誌11月号掲載原稿について

■機関誌編集委員会
日時：9月10日（金）12時～
出席者：渡辺和夫委員長ほか17名
議題：昭和57年11号（第383号）原稿内容の検討、一部訂正

■上映会
日時：9月17日（金）13時～
場所：機械興業会館地下2階ホール
入場者：約250名

社団法人日本建設機械化協会発行図書

建築機械整備ハンドブック（管理編）B5判 328頁 販価 4,000円 ￥400円

建築機械整備ハンドブック（基礎技術編）B5判 474頁 販価 8,000円 ￥500円

地盤凍結工法——計画・設計から施工まで B5判 176頁 販価 3,000円 ￥350円

国産建設機械主要諸元表（昭和57年度版）B5判 71頁 販価 800円 ￥300円

建築機械等損料算定表（昭和56年度版）B5判 200頁 販価 1,800円 ￥400円

（注）*印は会員割引あり
建設の機械化 '82.11

機械技術部会

■ダングトラック技術委員会重ダングトラック分科会
日時：9月8日（水）14時～
出席者：枠組み委員長ほか2名
議題：重ダングトラック性能試験法の案見直し

■排水ポンプ設備技術委員会幹事会
日時：9月17日（金）10時～
出席者：長田忠男委員長ほか13名
議題：排水ポンプ設備の現状と将来の検討

■耐火機械技術委員会
日時：9月22日（金）14時～
出席者：村松直美委員長ほか9名
議題：①委員長の指名ぎり②今後の推進について

■油圧機械技術委員会小委員会
日時：9月23日（金）14時～
出席者：原田邦男委員長ほか8名
議題：③委員会の組織について
④省エネ性能試験の見解について

■基盤工用機械技術委員会幹事会
日時：9月24日（金）10時～
出席者：木谷昌平委員長ほか7名
議題：①組立の統一作業運搬状況について
②本委員会開催準備について

■運営連絡会
日時：9月24日（金）10時～
出席者：内田賢一郎会長ほか24名
議題：①服屋レベル測定法の検討
②委員長の補充
③上期事業報告（案）の検討

■潤滑油研究委員会
日時：9月29日（木）13時半～
出席者：松江弘委員長ほか14名
議題：①MIL-C-2104の改訂について
②潤滑油の多様化について
③K-2001工業用潤滑剤を使用したJIS改定について

■建設機械用電気製品研究開発委員会
日時：9月29日（水）14時～
出席者：高橋四郎委員長ほか9名
議題：サービス改善の推進について

■建設機械整備ハンドブック委員会
日時：9月30日（木）14時～
出席者：松原秀男委員長ほか12名
議題：①建設機械安全性評価および動的安定性の検討について
②今後の検討準備について

■施工技術部会

■建設工事排水処理委員会濃縮剤ハンドブック作成委員会第8回シンポジウム
日時：9月10日（金）14時～
出席者：内村昌男委員長ほか3名
議題：施工技術に関する課題

■骨材生産委員会
日時：9月10日（金）14時～
出席者：塩野順吉委員長ほか29名
議題：①昭和67年度の事業計画について
②材料供給について

■基礎工用機械技術委員会幹事会
日時：9月24日（金）10時～
出席者：村松直美委員長ほか7名
議題：①組立の統一作業運搬状況について
②本委員会開催準備について

■建設機械整備ハンドブック改訂第1分科会
日時：9月13日（月）14時～
出席者：森田俊男分科会長ほか2名
議題：①推進状況について

■建設工事排水処理委員会排水対策ハンドブック作成委員会
日時：9月14日（火）14時～
出席者：松原秀男委員長ほか17名
議題：原案作成状況報告および調整

■事例研究委員会事例に伴う事例ハンドブック改訂第2分科会幹事会
日時：9月23日（金）10時～
出席者：五十嵐一郎副分科会長ほか5名
議題：原案作成について

■整備技術部会

■整備実用対策委員会小委員会
日時：9月14日（火）14時～
出席者：村松直美委員長ほか5名
議題：建設機械整備実用対策のとりまとめ方針の検討

■建設機械整備ハンドブック委員会
日時：9月16日（木）10時～
出席者：中島秀夫副委員長ほか5名
議題：①建設機械整備ハンドブック
②原案作成について

■部品工具委員会
日時：9月24日（金）14時～
出席者：望月敬司委員長ほか3名
議題：⑤年度上期事業報告（案）について

■建設機械整備ハンドブック委員会
日時：9月30日（木）10時～
出席者：中島秀夫副委員長ほか7名
議題：①建設機械整備ハンドブック
②原案作成について

■ISO部会

■運営連絡会
日時：9月9日（木）14時～
出席者：山本秀治委員長ほか12名
議題：①ISO/TC178/SC2デビューチーム
②ISO部会第1回第3、第4委員会報告
③ISO会議、ISO規格5年見直し等に関する報告

■標準化会議および規格部会

■規格部会第2委員会
日時：9月8日（木）14時～
出席者：長谷川弘毅委員長ほか2名
議題：①JCOMS 2013 規格について
②ISO/TC178/SC2デビューチーム
③ISO会議、ISO規格5年見直し等に関する報告

■規格部会運営連絡会
日時：9月9日（極）14時～
出席者：山本秀治副委員長ほか6名
議題：①IH 100 規格について

■重くダングトラック性能試験方法JIS
原案作成委員会
日時：9月28日（金）14時～
出席者：村松直美委員長ほか9名
議題：①重くダングトラック性能試験方法原案作成に関する検討
②規格案作成に関する検討
③小委員会開催に関する検討

業種別部会

■製造業部会対策委員会製造連絡会拡張会
日時：9月1日（水）13時半～
出席者：木内 哲治主宰世話人ほか5名
議題：建設機械展示会（新設）の会場、その他一般について

■製造業部会対策委員会製造連絡会拡張会
日時：9月9日（木）14時～
出席者：木内 哲治主宰世話人ほか7名
議題：1983年度版日本建設機械要覧（機械仕様表）における「機械性能表」対象機種の機械の取扱いについて

■製造業部会対策委員会製造連絡会拡張会
日時：9月9日（木）12時～
出席者：木内 哲治主宰世話人ほか7名
議題：1983年度版日本建設機械要覧（機械仕様表）における「機械性能表」対象機種の機械の取扱いについて
建設の機械化 '82.11

■建設業者見学会
日時：9月21日（火）
場所：水戸原築陽工業若手保育施設
参加者：52名

■製造業者会幹事会広報連絡会専務会
日時：9月24日（金）10時～
出席者：木内浩等係部長ほか5名
議題：製造業者協同組合総会の開催についての準備

■サービス業者会
日時：9月27日（月）14時～
出席者：小倉秀樹助監事ほか7名
議題：①横浜実業団建設部会の報告
②情報交換

宅造工事機械
施工調査専門会
■幹事会
日時：9月13日（月）18時～
出席者：中垣光弘幹事長ほか7名
議題：報告書の作成について

■関西支部
■技術部会第8回技術対策委員会
日時：9月6日（月）14時～
出席者：宗田進委員長ほか19名
議題：①スラリーでない腐食を用いるための対策

■北海道支部
■見学会
日時：9月2日（木）
場所：知内機械製造工場
参加者：15名

■建設機械整備技能検定実務実験評価体制
日時：9月14日（火）10時～
場所：札幌市技務講習会
内訳：整備技術教員会内受講者計3名
議題：整備技術教員会内受講者計3名

■技術部会技術委員会
日時：9月27日（月）14時～
出席者：松田昭和助監事長ほか4名
議題：整備機械技術講習会について

■東北支部
■運営委員会開催
日時：9月10日（金）12時～
出席者：川島俊夫支委長ほか19名
議題：新技術と施工技術調査会の紹介

■映画会
日時：9月9日（木）15時半～
場所：昭和ビル9Fホール

■参加者：約85名
内容：GONAM...
編集後記

ことしの夏は、日本列島全体がずれたのではなくかと思われるほど台風と異常気象に見舞われました。台風の残した跡は意外と大きく、復旧工事に携わっている方々、大変お忙しい時期であろうかと思いま

日本建設機械協会

「トンネルの切手」と題して、珍しい「アルプスの鉄道トネルの切手について紹介していただきました。

また一般の報文には、57年度電源開発事業の概要と上越新幹線建設の施工技術の図解などが、目新しい工事の施工実績や研究成果に関するものなど10件を掲載することができました。

各编辑者にはご多忙中にかかわらず有意な供文をいただき厚くお礼申し上げるとともに、読者の皆様のご健康とより一層のご活躍をお祈り申し上げます。（甘淳・松島）
丸友の移動式生コンクリート
製造・販売・リース
生産量 10〜90m³/H (15機種)

電子制御自動式
及び簡易自動式

丸友機械株式会社

タワークレーン・レンタルのパイオニア
レンタル・組立・解体・点検・整備をシステム化。あなたは使うだけ！
技術革新の時代に生きる、若人の進む道

建築工学科 定員80名
高校卒・2年課程・男女共学
1級・2級建築士養成

自動車工学科 定員200名
高校卒・2年課程・男女共学
2級自動車整備士養成

学校法人 久留米工業大学 久留米建設機械専門学校
〒834-01 福岡県八女郡広川町大字新代 ☎ 09433(2)0281

土木工事の積算と実際
定価 4800円 丸善等全国主要書店で扱います

昭和45年度第3期講習会の主テーマに取り上げられ、名著「土木工事の積算」が生まれてから10余年を経て全面的に内容を刷新した新版が登場。新界の第一線に立つ執筆者の全力を注いで書き下ろした注目の書。

内容目次
1. 積算概論（鹿島建設・宮原春樹）
2. 積算に必要な施工計画の立案（間組・鈴木博明）
3. 積算（建設省・長井典雄）
4. 工事（清水建設・黒田賢治）
5. 公共工事標準請負
6. 日本国有鉄道の場合（国鉄・木村博道）
7. 高速道路工事の場合（道路公団・福井章）
8. 帝都高速度交通団の場合（宮口・山本宏文）
9. 建設業の場合（日建・古賀功）
10. 契約約款の取扱い（建設省・古賀功）
11. 経費算定の明確化（大林組・米沢義信）

申込先 〒160 東京都新宿区四谷1丁目 土木学会 電話 03-355-3441 振替 東京 6-16828
新リサイクルシステム
コンクリート・ガラ処理の決定版!!
ポータブル
コンクリートクラッシャープラント

破砕能力360m³/日! 《他社比較1.5～2倍》
ワンタッチでジャッキアップ!
《安全・楽々・スピーディーな作業》
《電動油圧ポンプ設備》

2大特長

特長
◆コンクリートガラ(800％×300％)を砂利状に破砕します。
◆タイヤ式ですから、移動が簡単です。
◆小型軽量で、トラック運搬が楽です。
◆密閉式のため露出部分がなく安全です。
◆密閉式のため低騒音です。(30mで77ホーン)

トータルコスト低減
省資源・公害防止

仕様
型式…………………………SC-6153
全長…………………………4800m/m
重量…………………………10900Kg
クラッシャー……………………36°×15°
電力…………………………200V 55kW
ベルトコンベア………………5M×1.7M×1

※詳細資料は御請求下さい。
創業以来四十余年製造機専門アイヨンの

オカダ製岩機株式会社

本社 〒540 大阪市北区北浜町2-2 ☎(06) 842-5591(代)
支店 〒115 東京都板橋区新所沢2-8-25 ☎(03) 757-2011(代)
支店 〒503 大阪市中央区東成寺2-3-35 ☎(06) 786-2313(代)
営業所 〒915 北九州市長崎区長崎236 ☎(095) 885-7583(代)
営業所 〒552 名古屋市西区長栄町26 ☎(052) 751-1741(代)
営業所 〒251 堺市南区本2-37-63 ☎(06) 354-0086(代)
工場 〒577 大阪市北区 2-60 ☎(06) 787-4656(代)
貴方の機械の油圧装置は100％の性能を発揮していますか
testerにかけて性能をチェックする以外に方法がありますか

改良されたマルマ製ハイドロリックコンポーネントユニバーサルテストでは次のコンポーネントの試験が出来ます。
1) ポンプ（キャップ、ベーン、トロイド、プランジャー）
2) シリング
3) コントロールバルブ
4) トルクフロートランスミッション
5) トルクコンバータ（リーフテストのみ）
6) プランジャーモータ
従ってブルドーザ、グレーダ、ダンプ等の建機の
はかに加圧油圧系を使用する
エキスカベート、アスファルトフィニッシュ等の整備に
効力を発揮します。
弊社はこれらの整備・テスト
の御用命を承っています。

MH-100B油圧テスター仕様
- 驅動軸: 0～2500rpm, 無段変速, 正逆回転
- 高圧ポンプ性能Max 1900／min, 350kg／cm²
- 低圧ポンプ性能Max 1900／min, 70kg／cm²
- 流量測定Max 600ℓ／min・電動モーター100HP

簡単なフィールドや出先で性能確認するのにボータブル
タイプのハイドロリックテストがあります。
フローテック（Flo-tech）PFM 2はこの作業にピッタリです。

マルマ車車両株式会社
本社工場 東京都世田谷区松丘1丁目2番18号 〒156 ファクシミリ 03-420-3356
名古屋工場 愛知県北名古屋市南区市場25番地 〒485 ファクシミリ 0568-72-5209
相模原工場 横浜市相模原市大師台2丁目1番1号 〒222 ファクシミリ 0427-1528 13555
水島出張所 〒0884-5517・5517 〒056-56-3355

- 4 -
一度御使用になれば直ちに良さが判る

特許コンポータントンハンマー

特長
● ヘッドとハンドルが特殊ウレタンで一体成型され破損・抜出し等による災害の恐れが全くありません。
● 画期的な“テッドプロー”ショットのヘッド採用による無反動ハンマーで最少の疲労で最大の打撃を与えることができます。
● 相手の品物を傷つけることなく、騒音を減小し又危険な火花の発生もありません。
● 寿命が長く他のハンマーに比し大きなメリットがあります。

<table>
<thead>
<tr>
<th>ウェイト</th>
<th>全長</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>292</td>
</tr>
<tr>
<td>1/2</td>
<td>330</td>
</tr>
<tr>
<td>1</td>
<td>368</td>
</tr>
<tr>
<td>11/4</td>
<td>400</td>
</tr>
<tr>
<td>15/8</td>
<td>762</td>
</tr>
<tr>
<td>11/2</td>
<td>762</td>
</tr>
<tr>
<td>13/4</td>
<td>318</td>
</tr>
<tr>
<td>11/4</td>
<td>300</td>
</tr>
<tr>
<td>11/2</td>
<td>297</td>
</tr>
<tr>
<td>11/4</td>
<td>279</td>
</tr>
<tr>
<td>11/2</td>
<td>254</td>
</tr>
<tr>
<td>11/4</td>
<td>254</td>
</tr>
<tr>
<td>13/8</td>
<td>330</td>
</tr>
<tr>
<td>11/2</td>
<td>508</td>
</tr>
<tr>
<td>11/4</td>
<td>508</td>
</tr>
<tr>
<td>11/2</td>
<td>762</td>
</tr>
<tr>
<td>13/8</td>
<td>318</td>
</tr>
<tr>
<td>11/2</td>
<td>356</td>
</tr>
<tr>
<td>11/4</td>
<td>273</td>
</tr>
<tr>
<td>11/2</td>
<td>273</td>
</tr>
<tr>
<td>11/4</td>
<td>298</td>
</tr>
<tr>
<td>1</td>
<td>325</td>
</tr>
<tr>
<td>13/8</td>
<td>267</td>
</tr>
<tr>
<td>7/8</td>
<td>267</td>
</tr>
<tr>
<td>11/4</td>
<td>413</td>
</tr>
</tbody>
</table>

世界最高の品質と永久保証の工具……

Snap-on®

日本総代理店
内外機器株式会社

本社 東京都世田谷区桜3丁目11番12号
電話 03-425-4331(代表) 加入電信242-3716 〒156
名古屋営業所 名古屋市中区千代田5丁目10番18号
電話052-261-7361(代表) 加入電信442-2478 〒460
深礦基礎工事に威力を発揮
カホオートリフト

発売元
日鉄鉱業株式会社

製造元
嘉穂製作所

特長
①単体最大重量 80kg
②組立式、現場組立、解体至って間単
③深度に応じレール延長（1m単位）
④坑底ボタン開作で自動運転
⑤完璧な安全対策

械営業部 東京都千代田区神田駅前2-3-4（潮川ビル） ☎03/2952581（代）
北海道支店 ☎(011)561-3370
大阪支店 ☎(06)252-7281
九州支店 ☎(092)711-1022

東北支店 ☎(022)265-2411
名古屋営業所 ☎(052)962-7701
広島営業所 ☎(082)443-9244
掘りさげました。"}

■OLSSでパワーロスを大幅減少。両端の省エネ省圧システム（OLSS：負荷感応式最適流量制御システム）を採用。操作レバーの中立、ファインコントロール、リフレの各時刻に発生する様々な油圧パワーロスを大幅低減しました。また、定評あるビックパワーパク、コマツカミズNT855が直接噴射ならではの低燃費を実現します。

■クラス最強の掘削力。
バケット掘削力20トン、アーム掘削力16トン、共にこのクラス最強。しかも、独自の旋回前後可変ロバスピデックスシステムにより、旋回とアーム、アーム、バケットの同時操作が一定のスピード、パワーベースで行なえます。

■適切、安全の操作性。
ゆったりとした乗用車感覚の大形キャブ、ヘッドレスト付リクライニング・パワーシート、作業機レバーのセイ操作防止ロック、自動ロック式駐車ブレーキさらにOLSSの採用が低騒音化にも効果をあげている。きめ細かな配慮がなされています。

PC400仕様
●運転席重量：4/1000kg ●機関出力：240PS /800rpm ●バケット容量：1.2m³−2.0m³（標準）形状1.6m³ ●最大掘削半径：1/870m ●最大ダンプ高さ：7510mm ●全長：14700mm ●全幅：3505mm
●全幅：3400mm ●最大掘削深さ：7550mm ●バケット幅（標準バケット：サイドカット含む）：9720mm/16330mm

日本のコマツ 世界のコマツ ★KOMATSU★
本社〒107東京都港区赤坂2-3-6 ☎03(584)7111

北海道支社：011（661）1111 北海道支社：022（56）7111 北海道支社：085（91）3311 北海道支社：062（54）3311 北海道支社：077（26）3311

日本支社：058（77）1131 大阪支社：06（86）2121 関西支社：087（41）1181 中国支社：0829（22）3311 九州支社：092（44）1131

- 7 -
世界最大の建設機械見本市

開催要項
出展社数：1,100社以上（20ヵ国以上より）
訪問者数：176,300人（前回1980年）
出展面積：350,000㎡（屋内／屋外）
出展品目：建築用、土木用、シビル・エンジニアリング用、道路建設用、軽紡
繊維用、トンネル工事用機械・機器

第20回 国際建設機械見本市 西独ミュンヘン
1983年4月8日～14日

主催：
ミュンヘン国際見本市会議会社

在日代表部：
在日ドイツ商会議所 見本市部（塩崎）
〒160 東京都千代田区永田町2-14-3
TEL. (03) 393-1641
明日を創造する！

Mikasa

過酷な耐久テストと再度の精密検査を重ねて製品化される高度な三笠製品は、つねにその性能をフルに発揮し、内外各国のユーザーから絶大な信頼を得、また完璧なアフターサービスは世界的Mikasaの技術と信頼を更に力強く支えています。

特殊建設機械メーカー

三笠産業

本社 東京都千代田区築地町1丁目4番3号
電話 03 (282) 14141 大代表

-札幌出張所 札幌市中央区港北2-2 (西田ビル) 電話 011 (271) 1331
-仙台出張所 仙台市東区5-1-16 電話 0222 (55) 1521
-新潟出張所 新潟市西区324（エダビル）電話 0252 (34) 6666
-技術研究所 鳥取県白山町
-工場 群馬県渋川市／金沢市

西部地区総販売元 三笠建設機械株式会社
大阪市西区立売町3-3-10 電話 06 (541) 9631 大代表 出張所 名古屋／福岡

MVC-52G
MVC-74G/70G
MVC-90G/MVC-110F/MVC-130V
MVC-300G プレートコンパクター
小型強力浚せつ船
200〜3000馬力

カタログ説明書贈呈最寄現場下案内

Waterman Co., Ltd.

〒562 大阪市南区南長者町 1-14 TEL 06-252-0241

南星の複線式
H型ケーブルクレーン

★主索2本の開何処からでも横高さが可能で広範囲に打設が出来る。
★主索2本は長さが相違しても、高さの差があっても可能で、地形
に制限されず設計が容易である。又地盤の切削が必要でない。
★遠隔コントロール装置により操作が容易で、サリスタ、油圧プレ
ーク制御方式で速度制御が円滑である。

株式会社 南星

— 10 —
豊かな実績 ずり出し機械 新しいアイデア

- 自動土砂排出装置（特許）
- テルハ式排土装置
- スキップ式排土装置（実案）
- ダンプ用カーリフター
- 土砂ホッパー

※その他現場状況に合わせ設計、製作いたします。
※機種によりレンタルも可能です。

永吉永機械株式会社
東京都墨田区緑4-4-3 TEL (03) 634-5651

環境浄化 ディーゼル排気浄化装置
作業効率の向上

特 色
- カーボン排気の機構を内蔵、ススによる触媒槽の目づまりがありません
- 触媒ライフ 2000時間
- 触媒はバラジェム系で価格安定確保

効 果
- 黒煙除去、CO, HC減少
- 消音増効果の向上

利用機種
- ブルトザー、ショベル、ダンプトラック、コンクリートミキサー車、フォークリフト、発電機等すべてのディーゼルエンジンに適用可能

その他の取扱製品
- スパークアレスター…スパーソンSP型
- 消音器…スパーソンSPM型
- トンネル内集じん機…スパークロンSCCシステム

株式会社 イマイ

東京都大田区大森西2丁目18番23号 C-504
〒143
電話 東京 (03) 766-5819
騒音・危険のない、コンクリート・岩石破壊

無振動
無騒音
破壊工法

ダルダ

西独Hダルダ社製
油圧式
ロック・コンクリートスプリッター

ダルダロック・コンクリートスプリッターは、きびの原理を応用した破砕方法で、従来の爆破、打撃方法に比べ危険性、騒音、振動、作業の中断、管理、運転経費等の諸問題が一挙に解決されます。ダルダはその強力な破砕力と小型軽量、操作の容易性により、陸上、水中を問わず岩石・コンクリートの破砕工事に活躍して居ります。

Orient
オリエント通商株式会社

西独ハダルダ社
日本総代理店

東京 〒174 東京都板橋区板橋1-3-3(第一志伊ビル)☎03(362)7301
大阪 〒531 大阪市中津区洋間町3-3-2(TSビル)☎06(235)1923
広島 〒733 広島市中区東円寺町1-3(三峰ビル)☎082(294)8949

壊・水分・シャッタアウト

48V高周波パイプレータはコンクリート施工の中核機械になりつつあります。使用電圧48Vなので安全性が高く、軽量なので操作性にすぐれたHMV型振動機を、堅固で大動力を誇るHMK型振動モーターを用い、さらに3相48V200/240Hzの電源を供給する全閉型コンパクトシステム。パイプレータをつなぐ専用コードリール。ハヤシは豊富な現場経験にもとづいた48Vパイプレータシステムを提案し、作業現場の安全と生産性向上の役に立たせています。

時代の主流、ハヤシの高周波
48Vパイプレータシステム

林パイプレータ株式会社

本社・東京本部 〒105 東京都港区港南台1-18-8 ☎03(434)8451(直)
大阪支店 〒564 大阪府大阪市住之江の木29-8 ☎06(385)1019(直)
工場 〒634 広島県福山市福山町1558 ☎082(245)1116

札幌営業所 〒006-8613 ☎011-381-9093
横浜営業所 〒221-0011 ☎045-922-4541
横浜営業所 〒222-0012 ☎045-922-4541

新型コンパクトの詳細、納期実績を誇る各種パイプレータについては全国の販売店、あるいは当社各営業所にお問い合わせ下さい。
より速く・より強く・活躍する
三和機材のアースオーガー

土木建設工事は、様々な複雑なものとなり、振動制御、騒音制御、交通規制など多くの問題をかかえています。三和機材は、無振動、無騒音、無公害建設の問題を早くから取り組み、各種の建設機械を開発して来ました。特に20余年の製作販売実績をもつ当社のアースオーガーは、無公害打杭機の代名詞となっています。すぐれた性能、経済性、耐久性など数多くの特長をもち、軟弱地盤からN値の高い砂れき層、玉石層、さらに岩盤まで一貫する地盤に適用できる各種の工事に活躍しております。

ロックオーガー/圧縮風呂の高めがき層、玉石層、岩盤掘削及び大口径用の大出力（60馬力以上）のアースオーガーです。従来困難と言われた岩盤掘削もロックオーガーにより経済速度で実現でき、その威力を発揮します。

無騒音・無振動・高精度の
小口径管推進機 ホリゾンター
（水平ボーリングマシン）

ホリゾンターは、埋設する鋼管又はヒューム管の中に挿入した、オーガスクリューとオーガヘッドにより管先端を掘削し、先導管を方向修正をしながら、高精度に埋設管を圧入する、推進機械です。地表からの開削を必要とせず、ビル、鉄道、道路等の地下、その他あらゆる場所において、地上構築物の影響をあたえることなく、鋼管及びヒューム管を安全に、正確に、そして効率よく、地中に圧入することができます。下水道工事やパイプルーフ工事等に適しており、地盤適応管径の範囲が広い。

・地盤適応管径の範囲が広い。
・既設のマンホールに到達させ回取可能。
・方向修正により高精度施錐が可能。
・あらゆる地盤に適応できる。
・ヘッド先端より滑材注入可能。

無公害施設機械とソフトウェアで日本の建設に貢献する。

三和機材株式会社
大手建設機械メーカーへ
多くの実績を持つ
空冷オイルクーラーシリーズ

—低価格・高性能・軽量—

200□〜900□までの多種類・納期迅速材質が総アルミ製なので、軽量で耐圧、耐蝕に優れている。

営業品目
油圧・潤滑用サクション、低、中、高圧、リターン等各種フィルター、水冷、多管式オイルクーラー（自社製ローフィンチューブ組込）強制潤滑装置。

大生工業株式会社

本社工場 東京都板橋区若木2-32-2 設174
住所: 東京(03)3281(代)
紐繩 372-2880

中部工場
栃木県那須郡那須町大字南大和字平塚984-21 設321-05
住所: 栃木県(028788)7211
紐繩 3546-295

—14—
サーボ式 低域振動計

本製品は高い分解能(0.005gal)と安定性(0.05gal/℃)をもつ、トルク・リバランス方式の加速度計をパック・アップに使用しています。他の方式に比べ微視振動・超低域を精度よく安定に測定できる信頼性のある製品です。

（特 長）
● DC（直流）から測定できる測定振動数範囲が広くとれます。
 （DC〜100Hz±1.0dB加速度）
● 超低域振動数での位相特性が極めて安定しています。
● 積分・重積分同時内蔵ですので、振動の加速度、速度、変位が測定できます。

《仕 様》
測 定 範 囲
加速度：1〜1,000Gal （フルスケール）
速度：0.1〜100cm/sec （フルスケール）
変 位：0.1〜100mm/p （フルスケール）
アッテネータ：0.5〜500 10段

振動数特性：
加速度：DC〜100Hz±0.5dB以内
速度：1〜50Hz〜6dB/oct±0.5dB以内
変 位：1〜50Hz〜12dB/oct±0.5dB以内

ローバス：10, 40, 100, Hz （3段切換）
フィルタ特性：1Hz振動数以上 12dB/oct
直 線 性： ±1％以内
出 力 端 子：High out 100kΩ 負荷時 2Vp-p F.S.
 Low out 20Ω 負荷時 0〜5mA/p-p
S/N比：出力換算 40dB以上

 CAL 電圧：0.5Hz 正弦波 2Vp-p
使用温度範囲：0〜40℃
電 源：AC100V±10％ 50/60Hz 6VA
寸 法・重 量：
1チャネル式 幅214×高152×奥350mm 5kg
3チャネル式 幅242×高152×奥350mm 7kg

《用 途》
ビル・ダム・鉄塔・煙突・橋梁又は高架道路、高架鉄道等の土木建造物が地震・強風・水流・車両通行等の影響による低域振動の計測に適します。

【お問合せ先担当営業窓口】
市場開発部開発営業課
本 社 〒150 東京都渋谷区道玄坂1-21-6（新南平台東急ビル） （03）463-3111
大 阪 支 店 〒532 大阪市浪速区西中島1-11-16（住友商事大阪ビル） （06）304-8501
名古屋営業所 〒460 名古屋市中区栄2-28-22（日電名古屋ビル） （052）251-2330
耐久性、小型、軽量、低燃費を
エンジンの基本と考えています。

空冷4サイクル
ロビンエンジン

EY20D
- 最大出力: 5.0hp/4,000 rpm
- 輸送重量: 15kg

ロビンエンジンは、すぐにれた耐久性、小型、軽量、低燃費、低騒音などの優れたエンジンで、世界中から高い評価を受けています。製造者として、ロビンエンジンは、信頼性、耐久性、低燃費を追求しています。

富士重工の伝統ある技術から生まれたエンジン

富士重工は、ロビンエンジンの開発においても、高品質な製品を提供しています。ロビンエンジンは、世界中の業界で信頼されており、多くのニーズに対応しています。

富士重工工業株式会社

本社: 東京都新宿区西新宿1-7-2
大阪営業所: 大阪市西区新町2-12-1

電話: 03(347)2405-2412
電話: 06(532)0513

シリーズが豊富に揃っておりますので
カタログを御請求下さい。
すくれた集塵機構を持つテナントスイーパーは、世界各国で使われており最も信頼される清掃機として好評をいただいています。

人件費の削減
作業能率の向上
環境保全に

<table>
<thead>
<tr>
<th>型式</th>
<th>馬力</th>
<th>清掃能力</th>
<th>ポッパー容量</th>
<th>長×巾</th>
<th>重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-42GHD</td>
<td>7HP</td>
<td>3000㎡/H</td>
<td>91L</td>
<td>167×97cm</td>
<td>155kg</td>
</tr>
<tr>
<td>T-86A</td>
<td>15HP</td>
<td>10000㎡</td>
<td>400L</td>
<td>217×150cm</td>
<td>825kg</td>
</tr>
<tr>
<td>266</td>
<td>36HP</td>
<td>10000㎡</td>
<td>400L</td>
<td>240×150cm</td>
<td>1050kg</td>
</tr>
<tr>
<td>92DHD</td>
<td>74HP</td>
<td>20000㎡</td>
<td>646L</td>
<td>287×183cm</td>
<td>2205kg</td>
</tr>
</tbody>
</table>

発売元
富士テナント株式会社
東京都新宿区西新宿1−8−1（新宿ビル）
TEL. 東京 03（342）8681㈹ 〒160

●T-42GHD型
取扱い容易そして経済的な歩行型スイーパー。

●92DHD型
大きな能力と堅牢性を誇る国産ディーゼル搭載の大型スイーパー。

●T-86A型
耐久性と信頼性に優れた油圧駆動式中型スイーパー。

●266型
3つの新機構をもった
エキステンダマット（特許申請中）

★ハイト・アジャスト機構
エクステンション・スクリードの高さ調整が軽いハンドル操作で即座に出ます。

★スロープクラウン機構
メイン・スクリードのクラウン機構に加え、エクステンション・スクリードにスロープクラウン機構を設け、ショルダ部の摺り付け舗装が出来ます。

★エクステンション機構
2本の堅牢なガイドシャフトにより、明らかに伸縮出来ます。

高さ調整の出来るプレストライクオフ
メイン・スクリード、エクステンションスクリード共プレストライクを備えており、あらゆる舗装材に対して安定した舗装が出来ます。

スクリード全域にわたる加振装置
各スクリードは油圧モータを備えており、均一な展圧密度が得られます。

均一加熱の出来るプローハイパーナ装置
チューブ方式によりスクリード全体に均一な加熱が出来ます。

フロントにポーキ・ホイール、リアに高荷重タイヤを採用
ホイール・ベースの延長、接地圧の大巾低減、車体の安定性の向上により舗装仕上げ面の平担性及びスリップ防止を計りました。

仕様
舗装幅員………………………2.0〜4.8m
定格出力……………………70PS／2,100rpm
舗装速度………………………0〜40m／min
総重量……………………………11,000kg
BARBER-GREENE RX40 DYNAPLANE

切削される舗装材はそのまま再生使用が可能。

● グレード・スロープコントローラーにより正確なデブスコントロールが可能。
● 切削巾1.91m、ワンパスの最大切削深さ17cm。
● ベルトコンベヤーは、300t/hの処理能力。
● 積動状態そのままのトーラーによる運搬が可能。
頼もしくて、柔軟。

画期的な油圧ホース登場

パワーショベル・ローダに最適な
高圧ゴムホースです。

・耐衝撃性能100万回をクリア。
・曲げ半径が小さい。
・油温連続120℃で使用可能。
・使用圧力区分での商品体系。
・柔軟性にすぐれ、作業性をアップ。

175, 210, 250, 280 kg/cm²

BSIE

EPOQU エイパワークシリーズ

〒140 東京都中央区京橋1丁目1番1号大阪ビル TEL (03) 274-5071
既設プラントに容易にセットできます。

これまで進んでいる
日工の道路廃材のリサイクル装置。
アスファルト舗装廃材の処分方法は、ここ数年全国的な問題となり、いろいろな角度から検討されてきました。また廃棄物処分再利用へ、いまその実用化が高まっています。

日工のリサイクルユニットは、こうした社会の声を反映して生まれたニュータイプの再生合材生産装置。
既設のプラントに接続できる装置として、いま注目を集めております。

技術と経験が生活しています
長年にわたる技術と経験の上に、アメリカのポーイング社の技術を組み合わせた日工のリサイクルユニット、ひとつひとつに特有の機能に、すぐれた技術が流れています。

既設プラントに接続
この装置は、100％リサイクル専用ではありません。他の材料と組み合わせて使用するものとして、その機能を利用しています。

質の高い再生合材を生産
標準配合比率を25％、廃材の性質を見ながら合材の配合をコントロールできますので、すぐに使用目的にあわせた高品質の再生合材を生産することができます。しかもバッチ式ですから1回ごとに品種の切り替えもできます。

新方式
リサイクルユニット
日工株式会社

本社 / 明石市大久保町江井島1013-1 TEL(078)947-3131 (代表)674

支店 / 営業所
北海道 (011)231-0441 東北 (0225)66-2601 秋田 (018)83-1135
東京都 (03)324-6121 東海 (052)203-0375 新潟 (025)41-3200
北陸 (076)231-1300 大阪 (06)233-0561 長野 (026)28-0340
近畿 (072)231-3301 中 部 (052)221-7423
四国 (087)331-3209 九州 (0992)25-2156
マサゴの電動油圧式バケット

1. 電動油圧式ボリップ型バケット
2. 電動油圧式グラブバケット
3. 電動油圧式クラムシェルバケット
4. 電動油圧式水中型ドレッジャーバケット
5. 電動油圧式フォークバケット
6. 電動油圧式木材用バケット
7. 電動油圧式各種吊具

電動油圧式グラブバケット

特 長
1. どんなクレーンでも取付可能です。
2. 油圧式である為に強力な摺み力を発揮します。
3. 操作が簡単です。
4. 自重が軽くてすみます。
5. バケット荷役と、フック荷役の切替えが簡単です。

真砂工業株式会社

〒104-0061 東京都中央区新宿2-3-14日生ビル
電話（03）3081-1111 (代) icio 987
電話（大阪） 06-371-4751 (代) icio 500
電話（東京） 03-884-1636 (代) icio 121
コンクリート二次製品切断専用カッター

- 乾式ダイヤモンドブレード使用
- 切れ味抜群！小型、軽量、防振ハンドル付！
- 従来の常識を破った二次製品切断カッター！

スチール専用ドライブレード

スチールジャパンとクリスタルセーンループとの提携により共同開発されたドライブレードは、切れ味と寿命にすぐれた、世界的レベルの製品です。さらに、ユーザー各社の使用条件に適したより良い製品を目指して、技術研究努力を重ね、使用される皆様のご期待に添えることを願っております。

- 特長
 - 乾式ダイヤモンドブレードの使用により水を必要としない。
 - 切断時間が大幅に短縮される。
 - 製品の重量を大幅に軽減する。

エンジンカッター輸入元
スチールジャパン株式会社

ダイヤモンドブレード製造元
ワリステンセンマイカイ株式会社
建設機械の総合メーカーとして独自の地位を築いてきた当社は、長年にわたる経験と最新の技術に基づいて、長き、親しまれてきた油圧式ショベル「FH30A」を大幅にモデルチェンジし、この程最新鋭機「FH31S」の完成をみるに至りました。本機は62dB（30m地点）の低騒音を実現したほか、建設機械専用の強力なエンジンを搭載し、いかなる苛酷な作業現場にも耐え、特に掘削力は出力向上と共に当社の特許である油圧回路の自動増量・増圧機能により、硬砂には力強く、軽くは素早く動作して作業サイクルタイムを短縮するなど他社機種には見られない・優れた特長を有しております。本機の登場により時代のニーズにマッチした万能掘削機として皆様のお仕事に充分貢献でき得るものと確信いたします。
用途
エアモルタル、砕りしるモルタル、樹脂モルタル、セメントトミルク、泥土、排土、脱水ケーキ、各種薬液、その他

エアモルタル、凝結剤、泥土のパイプ移送にヘイシンモーノポンプ

凝結剤用（NE型）

エアモルタル用（NM型）
東京フレキ
バイブレーター
カッター

世界に伸びる東京フレキの技術と実績!!

高周波バイブレーター
(エンジンゼネレーター式)

コンクリートタンバー
(土間仕上機)
CT-25M
（モーター式又はエンジン式）

コアーボーリングマシン
BM-F型
（水平孔・垂直孔兼用機）

東京フレキのカッターは、新製品シリーズを加えて13機種となりました。業界随一の豊富な機種より御希望によりお選び下さい。

DCC-4RN型
回転ハンダ振動式
切取り深さ15cm
重量115kg

DCC-OR型
転動型4PS
切断深さ10cm
重量38kg

DCC-8A型
全自走式無段変速
（半自走式固定自在）
19PS
切断深さ30cm
重量360kg

製作所

東京フレキシブルシャフト製作所

〒144 東京都大田区羽田5丁目5番3号 電話 03(744) 8711（代表）
〒144 第 1 工場 東京都大田区羽田三田町15番地
電話 03(744) 725 1（代表）
〒144 第 2 工場 東京都大田区羽田5丁目5番6号
電話 03(744) 3111（代表）
〒616 福岡営業所 福岡市博多区東肥原1丁目18番28号
電話 0924717051（代表）

〒880 仙台営業所 仙台市太白区1丁目1番11号
電話 0222（75）1261（代表）
〒900 水戸出張所 茨城県土浦市中村町20番23号
電話 0294842174（代表）
〒634 大阪出張所 奈良県橿原市川西町784-8
電話 07442（7）8246（代表）
"ポータブルしゅんせつ船"（無公害機器）

使用箇所紹介
- 河川での砂採取及びしゅんせつ工事
- 民有地での砂採取
- ダム内での砂採取、深掘型16〜20m掘削船も製作可
- 湾内での砂採取、耐波浪船設計可

特徴
- 操作はワンマンコントロールで、しかも騒音が少なく静かである。
- ポータブルタイプですから場所の移動が容易である。
- 耐摩耗性に優れた材質のポンプ、及びカッターである。
- ボディーは小型でも安定性は高く性能は抜群である。
- 掘削深度は8〜12m、深掘船では16〜20mと掘削可能である。

性能・仕様

<table>
<thead>
<tr>
<th></th>
<th>200P</th>
<th>250P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポセidon</td>
<td>200×500(8インチ)</td>
<td>250×600(10インチ)</td>
</tr>
<tr>
<td>掘削重</td>
<td>120〜80m³/h</td>
<td>160〜80m³/h</td>
</tr>
<tr>
<td>配送距離</td>
<td>300〜600m</td>
<td>400〜800m</td>
</tr>
<tr>
<td>機関出力</td>
<td>60PS</td>
<td>80PS</td>
</tr>
<tr>
<td>全体寸法</td>
<td>長幅高</td>
<td>20×6×8m</td>
</tr>
<tr>
<td>重量</td>
<td>30t</td>
<td>45t</td>
</tr>
<tr>
<td>掘削</td>
<td>0.3m</td>
<td>0.3m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>300P</th>
<th>350P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポセidon</td>
<td>300×600(12インチ)</td>
<td>350×600(14インチ)</td>
</tr>
<tr>
<td>掘削重</td>
<td>200〜100m³/h</td>
<td>260〜120m³/h</td>
</tr>
<tr>
<td>配送距離</td>
<td>500〜1000m</td>
<td>800〜1500m</td>
</tr>
<tr>
<td>機関出力</td>
<td>60PS</td>
<td>120PS</td>
</tr>
<tr>
<td>全体寸法</td>
<td>長幅高</td>
<td>25×7×10m</td>
</tr>
<tr>
<td>重量</td>
<td>55t</td>
<td>65t</td>
</tr>
<tr>
<td>掘削</td>
<td>1.0m</td>
<td>1.0m</td>
</tr>
</tbody>
</table>

可搬式ヘドロ浚渫船

詳しくは問合せ・カタログ請求は下記へ

株式会社川浪

KSK

アースワーク

アースワーク - バイブ - トラック

推積ヘドロ - 塊割ヘドロ

同含水比（二次汚染なし）
高度な作業を的確にこなす。

P&H KOBELCO
880-S クローラクレーン

巻上・ブーム起伏には機械式、旋回・走行には油圧式。それぞれの長所をついに生かした駆動システムを採用。作業性、安全性、操作性などが大幅に向上しました。

最大つり上能力 80ton×4m
最大主ブーム長さ 54.86m
ジブ付最大ブーム長さ 45.72m+18.29m（ジブ）

神鋼商事 株式会社
建設機械事業部

東京本社 東京都中央区日本橋1-2-5 新103室 TEL:03(376)2000
大阪本社 大阪市東区北浜3-5-59 TEL:06(202)2231

出典：株式会社神鋼商事
(チームズトンネルシールド)
1825年シールド工法は、コンクリートのチームズ川の水道トンネルで初めて採用された。その後工法は改良され、今日に至っている。我が国においては、1960年に名古屋の地下鉄工事で初めて実施された。

西尾ワークスでは、創業以来、常に建設機械の総合レンタルを目指し、シールド工事を初めとする特殊工事用機械から一般・土木・道路工事用機械、高所作業用機械、建築用機械に至るまで、広く皆様のお役に立っております。

〈高所作業用機械〉〈土木・道路工事用機械〉〈建築用機械〉〈シールド工事用機械〉

スポンジバー
スカイマスター
スカイリフト
スカイブーム
パーソナルリフト他

プラッドー
トーザリザベル
ハシドナ

ジブクレーン
タワークレーン

エレベータ

プロス

ペグ

コーキ

レンガ

レンガ

建機機械の総合レンタル

西尾ワークス株式会社

本社 〒542 東京都港区芝浦2-17-20（門司ビル2F）☎03（281）02400

東日本営業本部 〒103 東京都中央区八重洲1-7-10（友栄ビル2F）☎03（281）02400

西日本営業本部 〒731 大阪府北区1-1-1（南大阪ビル1F）☎073（40）45000

北海道 〒004-01 北海道札幌市北区北3条西8丁目42-101 ☎011（881）1240

仙台 〒980-31 宮城県仙台市青葉区1-1-13 ☎02237（810000）

宇都宮 〒321 宮城県宇都宮市東1-2-3 ☎0286（06）6240

名古屋 〒461 一宮市日進町9丁目南2-3 ☎0568（07）6240

広島 〒730 広島市西区柳町1-1-16 ☎082（820）2240

高所作業機械専門 〒307 東京都新宿区西4-1-23 ☎03（451）0751

全国営業所

— 30 —
一段と広がる活躍分野

TCMトラクタショベル75Bは、パッケージ容量2.3m³。比較的ない作業量580m³/h。碎石現場をはじめ、幅広い分野で示るパワーを発揮する精鋭です。

160PSと、ひとクラス上のパワーを持つ

馬力当たり重量は77.8kg/PSと小さく、機動性は抜群。最大けん引力は11,500kgと強力、ズバ抜けた突込力です。

機動性、操作性、安全性など全てにレベルアップの75B

上昇速度もスピーディ。また前後進の切換えがスムーズで、オペレータにショックを与えないモジュレートトランスマッショ

など運転者尊重の疲労軽減設計です。そのほか偏荷重に強い2枚板ブーム、パッケージ起力の大きい逆2リンク機構、上昇荷重がアップするトラスオンマウント式を採用。
トクデン は技術派、実力派！

営業品目
●各種コンクリートバイブレーター（エンジン式、電気式、空気式）
●水中ボンプ
●タンパー・バイブレーションプレート
●振動モーター
●振動フィーダー
●コンクリート・ヨード・フィニッシャー
●メンシェ・インストラーバ・その他振動機械

●最高の安定性と高能率

タンパー

●特殊振動方式の採用で耐久力が大。
●強力な振動能力で整が良い。
●ハイジャックで前進両力が強力。
●取扱いが簡単で、荷搬運も容易。
用途
道路・滑走路、堤防・アスコン等の
路面、路盤の舗装、建築工事の盛土
架石の築き、従電塔電、ガス管、
水道管等の建設後の整造

●初めて完成された正転・逆転自在の(図示的)なバイブレーター

バイトッパ

●上面加工された球面によるすばらしいアイル漏れ防止構造
●特殊加圧された強力なフレキシブルシャフト
●ヒューズブリーの採用によりネフティーオート、単相連絡に
よるコイル損傷をシャットアウト！
●バイブレーター用のエンジンは、そのままポンプの原動機
に使用できます。

●騒音公害の解消

に新装置

バイブレーションプレート

●自走力（每分25m）抗群で作業能率アップ。
●小型軽量な上に軽力が大。
●完全な防音で、騒音の作業ができる。
●表面仕上げが圧倒的にベルト押出が容易。
用途
●アスファルト舗装の舗装、表面仕上げ。
●機台、土台の砂利、砕石、砂等の舗装。
●ガス管、水道管、ケプル埋設管の道路補修。

●一人で持運びも、操作もできる(高性能水中ポンプ)

ポンプ

●エンジンでもモーターでも使用できる。
●浮き上がりにくい。
●土砂混入のふこえでも摂水できる。
●脱脂盤はバイブレーターと完全完結できる。
●故障が少ない。
●エンジンはそのままバイブレーター用に使
用できる。

c等。
複雑・多様化の作業に応えた、新鋭機

明日のスティリング・性能を満載して風刺と登場した、UH06-5。発売以来、都市・一般土木から農業土木まで汎用性に富んだ高性能機として注目をあつめています。とりわけ、目を広げるものか経済性と居住性の向上。そして、広い作業範囲、低騒音化などなど、コンパクト設計とあわせて高率作業を実現しています。

・信頼性と燃費効率に優れている、93S5直噴エンジンを搭載。
・低騒音仕様に加え、2重構造（実用新案申請中）採用により、キャブ内の騒音・振動とも大幅に低減。
・最大揚程半径8.86m、最大揚程深さ6.03m、最大タンク容積5.725mとの、ひとまわりビッグな作業範囲。
・エネルギーを適度に、ポンプ出力量を自動的に制御する外部コンペント制御システム（特許）を採用。

UH06-5
日立油圧ショベル

パッケージ容量・4.4〜6.8m³
エンジン力・93S5/2、2300rpm
全長重圧力・15.7t

ニーズを先取りし
確かな技術で応えます

日立建機株式会社 本社：東京都千代田区内神田1-2-10
〒101 TEL/03)3260-3611(2代表)
低周波誘導加熱装置

特許《重油燃焼のない画期的多用途加熱装置》

アスファルトプラント《約1,310万円／年間の損をあなたはしていませんか。》

- 省エネルギー（ワット表）-

<table>
<thead>
<tr>
<th>タンク種類</th>
<th>周波数</th>
<th>容量(kW)</th>
<th>建物価格(円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10トン</td>
<td>1基</td>
<td>5</td>
<td>2,200,000</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>11</td>
<td>3,300,000</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>16</td>
<td>4,600,000</td>
</tr>
</tbody>
</table>

上記表より周波数の利用した加熱が証明する。省エネルギーにふさわしい小さなキロワット数で長く、安全性の高いものであることに注目しています。

《割賦販売も御利用下さい》

■ランニングコスト年費比較表

<table>
<thead>
<tr>
<th>加熱方法</th>
<th>燃料方法</th>
<th>電気料金</th>
<th>誘導加熱</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2ヒーター</td>
<td>16,000,000</td>
<td>3,200,000</td>
<td>0</td>
</tr>
</tbody>
</table>

年間差額は16,300,000円、インターロック方式を加えるとさらに利益は、増加します。

■アスファルトプラント《周波数加熱》
タンク及配管、計量槽、ミキシングタワースすべて誘導加熱で均一加熱し、安心した操業が図られます。又配管及タンク等に燃料油は一切使用しないと言うのが当製品の特徴です。

省エネルギー装置 超高圧ドライヤーバーナーSPB
(特許出願)《世界に誇る超高圧噴射圧力100kg/cm²〜600kg/cm²》

■重油節減率8%以上を契約！
■アスファルトプラント用ドライヤーバーナー燃焼装置
又一般加熱炉等に使用可能です。

■原 理
SPBバーナーは燃料油を超高圧(MAX600kg/cm²)に加圧することにより燃料を超微粒化(0.1〜0.3ミクロン(従来50〜100ミクロン))することにより霧化を促進し燃焼速度を上げ最大の省エネを計る

■効 果
1.燃焼速度の向上
2.燃料の微粒化による完全燃焼
3.バーナー先のカーボン附着度の解消
4.燃焼時の燃焼の解消
5.過酸化物(NOx)の低減

以上は全てにおいて効果は大である。

(既設バーナーとの交換は1日でOK)

株式会社ニチユウ
〒141 東京都足立区西五反田2の12の15 03(34)492-0051
見せる技、見えない技術。

高圧ホースのトップメーカー、
横浜エイロクイップから
高圧樹脂ホース "アイバー" がついに登場です。
このアイバーはコンパクトな機械設計に
欠かせない柔軟、軽量、そして耐衝撃性を
十分に装備し、また、ナイロンホースN170の
品種拡大を図って誕生した画期的な
高圧樹脂ホースです。

各種の用途に合わせて

高压樹脂ホースの新シリーズ "アイバー" は、各種の用途
に合わせてお選びいただけます。

<table>
<thead>
<tr>
<th>品番</th>
<th>規格（インチ）</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>N170</td>
<td>SAE 100R7規格（1B品）</td>
<td>一般油圧用</td>
</tr>
<tr>
<td>N172</td>
<td>SAE 100R7規格（2B品）、フェーリフィット用、耐摩耗性のある箇所</td>
<td></td>
</tr>
<tr>
<td>N173</td>
<td>SAE 100R7規格（3B品）</td>
<td>シングルホース（曲げ半径が小さい）</td>
</tr>
<tr>
<td>N175</td>
<td>SAE 100R8規格（3B品）、超高压ホース</td>
<td></td>
</tr>
<tr>
<td>N177</td>
<td>工作機械用ホース（外径W/B品）</td>
<td>耐強度は1B+IW/B</td>
</tr>
</tbody>
</table>

横浜エイロクイップ株式会社

－35－
明日をつくる建設の機械化・合理化・安全につくす………

営業品目（土木関係）
各種シールド掘進機
推進工事用油圧装置
推進工事用2段伸び推進ジャッキ
泥水シールド用泥水処理プラント
泥水シールド用流体輸送装置
すり搬送装置
裏込注入機械装置
坑内用・乾式高圧トランス
ダンステップ（坑内用・合成樹脂製あゆみ板）
隧道用各機械・機材
ナトム工法用各機械
ダム用バイブルドーザー
超軟弱地盤改良処理装置
スーパーラダー（立坑・地下工事用吊り階段）

レンタル商品・在庫豊富
シールド用ジャッキ・油圧ユニット
2重推進ジャッキ
泥水処理プラント
乾式高圧トランス（75〜300kVA）
ダンステップ
ナトム工法関連機械
スーパーラダー
仮設機材一式

創業58年
藤機械工業株式会社

本社 〒550 大阪市西区南堀江3-9-27 ☎ 06(541)7931
東京支店 〒101 東京都千代田区三崎町3-10-5 ☎ 03(262)1531
名古屋営業所 〒450 名古屋市中村区名駅南5-14-9 ☎ 052(581)4316
京都営業所 〒615 京都市右京区西院中町25（東京ビル） ☎ 075(314)4480
福岡営業所 〒812 福岡市博多区博多駅東1-9-15 ☎ 092(433)1781
松山営業所 〒772 松山市本町3-22-22 ☎ 08720(27)0661

バイブルドーザー（ダム用機械 打バイブレーター）
余裕ある作業能力で、950Bは安定した生産性を確保しました。
名車を超えた名車、CAT950Bホイールローダ。たとえば1時間でどれだけの仕事をこなせるか、という時間当
り作業量のテスト結果は、前身950と比べ27パーセント（原石積込みをはじめ、5種類の作業での平均値）も向
上。このクラスの常識を大きく改めました。時代をリードする先進の設計思想に裏づけられた、信頼の証です。

DESIGN 21
実証される先進性。
先進の設計思想から生まれたCAT950B
966Dホイールローダ。いま、ユーザーの方々
に新しい価値をもたらしながら、各地で活躍
をはじめました。生産性の向上、機械経費の
低減、オペレータ環境の向上……価値の基
準はDESIGN21から変わってゆきます。

CAT950Bホイールローダ
■14,950kg ■157ps ■2.4m³
CAT966Dホイールローダ
■19,800kg ■203ps ■3.1m³

21世紀へ

CATERPILLAR

株式会社 木村神奈川製造所 〒223-0203 TEL:044-662-1121
高効率と省燃費と... 厅代を先取りした 数かずの機能を搭載して新登場！

エンジンコンプレッサーはデンヨー——この幅広い支持と期待に応えて、評判の〈PCシリーズ〉にいよいよ望の新製品が誕生しました。能率アップとメンテナンスコストや燃費などの大きな利益を実現したこのニューモデル。さらに、時代の要請を先取りしたスーパースターです。

新製品の5種類はいずれもスクリュータイプ。IC制御によって自動暖機運転ができるコンパクト化された高性能機です。集中一線操作の使いやすさ、安全運転のためのOKモニターを装備。そして、音の静かさや半永久的な耐久性など、いま考えられるすべての技術を投入しました。その実力は、省エネ時代といわれる今日だけではなく、これからの時代においても充分対応できる内容をもっています。

新発売 DPS-650SSの仕様

<table>
<thead>
<tr>
<th>同時発売の新製品</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPS-130SS<3.7m³/min></td>
<td>休止/9m³/min</td>
</tr>
<tr>
<td>DPS-270SS<7.6m³/min></td>
<td>冷却液18.4m³/min</td>
</tr>
<tr>
<td>DPS-180SS<5.1m³/min></td>
<td>貯蔵13.5m³/min</td>
</tr>
<tr>
<td>DPS-375SS<10.6m³/min></td>
<td>テンプレート/18m³/min</td>
</tr>
</tbody>
</table>

省燃費・防音型 エンジンコンプレッサー

デンヨー株式会社

本社／〒164 東京都文京区上高田4-2-2 TEL（03）393-3111（代表）
代表 藤原芳明／支局：東京、大阪、名古屋、京都、広島、鹿児島、九州、全国40都市
両輪駆動
ステアリング軽快・サイド転圧可能

新製品
MUS－12型
自重1.2t
（ディーゼル）

MUS－30型
自重3.0t
（ディーゼル）

MUS－26型
自重2.6t
（ディーゼル）

ハンドローラ
上下回転式ハンドル 全油圧（特許出願中）

MRA－65型
（ガソリン
ディーゼル）

MRA－75型
（ディーゼル）

MRA－85型
（ディーゼル）

タンパランマー
RT－75型
オイル
自動循環式
■ベルト掛け廃止
■ショックアブソーバ廃止
■グリッサップ全廃
■内部シリンダー廃止
■コイルばね数減少

バイブロプレート
アスファルト舗装・
表面整形・補修
P－120型－120kg
P－90型－90kg
P－85型－85kg
VP－80型－80kg
VP－70型－70kg
KP－60型－60kg

新製品
センターピン方式

株式会社
明和製作所
（カタログ送呈）
川口市青木1丁目18-2〒332
本社・工場
本社・工場
本社・工場
本社・工場
本社・工場
本社・工場
本社・工場
№119508-3
ダブルバッグ480本装備
バグフィルタ内部
処理風量1100M³/MIN
にて稼動中
一日本鈴道館殿納入一

○ 乾式集塵装置の小型化に
現在ご使用中のバグフィルタにダブルバッグを取りつけ他の機構は
そのままで処理能力が一挙に40〜50%アップできる画期的なバグ
フィルタです。
ダブルバッグにより濾布のとりつけ本数が少くなり、例えば従来型
シングルバグ340本はダブルバグ230本となります。

○ 据付面積：シングルバグフィルタの約4/5

○ 設備投資の軽減に

○ 他社型式のバグフィルタにもダブルバグは適用で
できます
米国アステック社の技術と当社の実験研究と日本鈴道館殿のご協
力により、数万時間の現地テストにより協同開発され、性能は抜
群です。

ゼムコインターナショナル株式会社
東京都大田区大森北1-28-6 ☎ (03) 766-2671 代表
レーザービームで建設工事の省力を！

特徴:
○ 建設機械の自動制御に最適な構造（堅牢、取扱い簡単）。
○ 温度（-18℃～+67℃）、風、振動の影響を自動補正する。
○ レーザービームによる上昇、下降またはステアリングの制御信号を大きくならせてディスプレイアセンコンにより周囲の広範囲な所から観測確認できる。
○ 高精度、レベルのチェックにも最適。
○ 縦断、横断二方向に勾配がとれる。
○ 取付の御相談に応じます。
○ アスファルトフィニッシャ、モータグレーダ、ベースペーパ、ブルドーザ等に取付可能。

（米）レーザーアライメン社
輸入元 日本ゼム株式会社
東京都大田区大森北1-28-6 ☏ 03-766-2671
豊和ウエインスイーパー

HF95H（四輪ブラシリャーリフトダンプ式）

◎回収した土砂をダンプトラックへ積載できます。
◎1,900ℓの大型散水タンクを搭載長時間散水が可能です。
◎低速から高速まで、条件に適したスピードで清掃できます。
◎2個の側ブラシにより強力で効率のない清掃ができます。
◎キャブ内の居住性抜群で、運転操作も容易です。

●その他Howaの豊富な機種から用途に合せてお選び下さい。

（製造元）Howa豊和工業株式会社

MKS三井物産機械販売株式会社

本社〒105 東京都港区西新橋2丁目23番1号 第3東洋海外ビル TEL03(436)2851 大代表

札幌営業所 011-271-3651 名古屋営業所 052-823-5311 関東営業所 03-436-2861
仙台営業所 0222-86-0432 大阪営業所 06-305-2755 東京営業所 03-436-2871
新潟営業所 0252-47-8381 広島営業所 082-227-1801 那覇営業所 0988-63-0781
長野営業所 0262-26-2908 福岡営業所 092-431-6761 産業設備営業室 03-436-2865
三菱産業用エンジン

東北新幹線、陰のエキスパート。

東北の新しい動脈。東北新幹線。それは日本の建設業界のパワーがフルに発揮された建設事業でした。もちろん、三菱産業用エンジンも役立っています。パワーショベルやホイールローダーに搭載され、欠かせない存在として活躍しました。建設機械の心臓部であるエンジン。それだけに信頼されるもの Между требованиям.三菱産業用エンジンは、性能、耐久性、すべてに定評があり、信頼性とかなエンジンとして、パワーショベルのうち1台に三菱産業用エンジンが搭載されているのをはじめ、各種の機械に採用され、その実力を十分に発揮しています。

28馬力から355馬力までのワイドバリエーション。

△＝直噴式 ★＝ターボ付 記号は機種名、すべてディーゼルエンジンです。※資料のご請求は請求書を貼って、産業エンジン部へどうぞ。

三菱自動車工業株式会社
産業エンジン部 東京都港区芝3-33-6 〒108 東京03(455)1011
今日の対話を明日の技術へ
株式会社加藤製作所

今日の対話を明日の技術へ

株式会社加藤製作所

今日の対話を明日の技術へ
株式会社加藤製作所
昭和57年11月号 PR 目次

— B —
プリズトン・インペリアル（株）…………………………後付 20

— C —
キャタピラー三菱（株）………………………………後付 37

— D —
デンヨー（株）………………………………後付 38
(社)土木学会……………………………… # 2

— F —
富士テナント（株）………………………………後付 17
富士重工業（株）……………………………… # 16
古河鉄業（株）……………………………… # 25

— H —
範多機械（株）………………………………後付 24
株バイブレータ（株）……………………………… # 12
日立建物……………………………… # 33
兵神製備（株）……………………………… # 26

— I —
(株)イマイ………………………………後付 11

— J —
ゼムコインターナショナル（株）……………………後付 40

— K —
(株)加藤製作所………………………………後付 44
川崎重工業（株）………………………………表紙 4
(株)川崎………………………………後付 28
増東貿易（株）……………………………… # 18, 19
久留米建設機械専門学校……………………………… # 2
(株)小松製作所……………………………… # 7

— M —
真砂工業（株）………………………………後付 22
マルマ重車両（株）……………………………… # 4
丸善工業（株）………………………………表紙 2
丸友機械（株）………………………………後付 1
三笠産業（株）……………………………… # 9
三井物産機械販売（株）……………………………… # 42
三菱自動車工業（株）……………………………… # 43
(株)明和製作所……………………………… # 39
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>内外機器（株）</td>
<td>後付 5</td>
<td></td>
</tr>
<tr>
<td>（株）南星</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>西尾リース（株）</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>（株）ニチユウ</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>日揮ユニバーサル（株）</td>
<td>さし込</td>
<td></td>
</tr>
<tr>
<td>日工（株）</td>
<td>後付 21</td>
<td></td>
</tr>
<tr>
<td>日鉄鉄業（株）</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>日本ゼム（株）</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>日本航空電子工業（株）</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>日本住宅産業リース（株）</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>オカダ製岩機（株）</td>
<td>後付 3</td>
<td></td>
</tr>
<tr>
<td>オリエント通商（株）</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>三和機材（株）</td>
<td>後付 13</td>
<td></td>
</tr>
<tr>
<td>スチールジャパン（株）</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>神鋼商事（株）</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>齊機械工業（株）</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>大生工業（株）</td>
<td>後付 14</td>
<td></td>
</tr>
<tr>
<td>（株）東京フレキシブルシャフト製作所</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>東京工機（株）</td>
<td>表紙 3</td>
<td></td>
</tr>
<tr>
<td>東京流動製作（株）</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>東洋運搬機（株）</td>
<td>後付 31</td>
<td></td>
</tr>
<tr>
<td>特殊電機工業（株）</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>（株）ウオタマン</td>
<td>後付 10</td>
<td></td>
</tr>
<tr>
<td>横浜エイロキャップ（株）</td>
<td>後付 35</td>
<td></td>
</tr>
<tr>
<td>吉水機械（株）</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>在日ドイツ商工会議所</td>
<td>後付 8</td>
<td></td>
</tr>
</tbody>
</table>
BOSTROM
安全性と快適さの決定版

ボストロム サスペンションシート
安全性を追求。ボストロムシートで快適運転。
ボストロムシートは、建設機械・フォークリフト・農業機械等の車両用に特別に開発されたサスペションシートで、トーションバーと油圧ダンバーの働きにより座面よりの振動やショックを吸収することができます。そのため乗り心地が大幅にアップし腰痛等の職業病の防止に役立つとともに、安全性及び作業効率の向上にもお役にたちます。
舗装幅が自由に変えられる！
ワンタッチレバーで省力化——仕上りも抜群！

東京工機のアスファルトフィニッシャは、定評ある舗装仕上りに加え、全機種のスクリードを、伸縮自在なバリアブルエクステンション・バリアブルスクリードを備え、省力化を可能にしました。

パワーレジオネーションに富むTK式アスファルトフィニッシャ

<table>
<thead>
<tr>
<th>機種型式</th>
<th>駆動方式</th>
<th>鋸削幅（m）</th>
<th>スクリード型式</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-FCN-SVE</td>
<td>機械式</td>
<td>2.4 - 4.2</td>
<td>バリアブルエクステンション</td>
</tr>
<tr>
<td>MTF-FCN-OVE</td>
<td>機械式</td>
<td>2.4 - 4.5</td>
<td>バリアブルエクステンション</td>
</tr>
<tr>
<td>MT-FCN-0VE</td>
<td>機械式</td>
<td>2.4 - 4.5</td>
<td>バリアブルスクリード</td>
</tr>
<tr>
<td>MTF-0VE</td>
<td>機械式</td>
<td>2.4 - 5.0</td>
<td>バリアブルスクリード</td>
</tr>
<tr>
<td>MTF-50NVS I</td>
<td>油圧式</td>
<td>2.4 - 5.5</td>
<td>バリアブルスクリード</td>
</tr>
<tr>
<td>MTF-50NVS II</td>
<td>油圧式</td>
<td>2.4 - 6.0</td>
<td>バリアブルスクリード</td>
</tr>
</tbody>
</table>

※従来の定形式スクリードもあります。

営業種目：アスファルトフィニッシャ・路面切削機・ロードクリーナ・アスファルトクラッカー・ロードスタビライザー・再生合材プラント・破砕プラント・ホットサイロ・電熱式Asタンク・バグフィルタ

道路舗装機械の専門メーカー

東京工機株式会社
ゆっくりとした座り心地の良いシートは、5種類の位置調整機構付き。エアコンが、つねに理想的な室温を保ち、万全の防音対策を施した静かな室内には、カーステレオの軽快な音楽が…。オペレータ重視設計・20年の経験と技術が生んだ、デラックスキャブの室内です。しかも、ホイスト、パケットのレバー操作力は、わずか2.5kg。快適空間での軽快なオペレーションをお試しください。