除雪トラックの自動化

甲斐 賢・岩崎 茂雄

除雪トラックは、新雪除雪・圧雪整正用機械として広く普及している。路面整正装置（トラックグレーダ）による圧雪整正作業は従来によく行われていたが、操作の自動化が望まれていた。本報文は、除雪トラックの自動化に関するものであり、最新のオートマチックトランスミッション付きトラック及び除雪作業時にブレードと路面及び圧雪により発生する振動を利用したブレードの自動制御装置の技術を報告する。これらの技術により、初心者でも機械の性能を十分発揮できるようになり、除雪作業の安全性や作業効率が向上した。

キーワード：除雪トラック、オートマチックトランスミッション、除雪装置、トラックグレーダ装置、自動制御

1. はじめに

道路網整備され、通行車両の増加と高速化にともなって、安全で効率的な除雪作業が求められ、除雪トラックはめざましく進歩した。また、オペレータの高齢化および熟練オペレータの不足が社会問題化し、除雪トラックの自動化を検討され、オートマチックトランスミッションや路面整正装置（トラックグレーダ）の自動制御装置が開発された。

現在、除雪トラックは高速道路用として高出力10t級6×6、幹線国道用として10t級6×6、10t級4×4が主に用いられているが、これらの自動化の技術について紹介する。

2. 除雪トラックの概要

除雪トラックは、車両クラスや架装形態によりさまざまな種類がある。国道及び高速道路除雪トラックは、最新の自動化技術が採用され、戦略化、及び安全性の向上が図られている。高速道路用の除雪トラックは、国産最大クラスが採用されており、特長は、以下のとおりである。外観を写真1、図−1、仕様を表−1に示す。

① 最高出力316kWの高出力エンジンを搭載している。
② オートマチックトランスミッションを搭載している。
③ 前輪は許容荷重が9,000kgのスタッドレスタイヤ365/70R22.5-160Jを装着しており、路面整正装置（トラックグレーダ）作業時の除雪能力及び作業中の安全性向上が図られている。
④ 除雪装置は、前方に4.2m2分割折りたたみ式ワンウェイブラウ、4.2m折りたたみ式路面整正装置（トラックグレーダ）を装着し
表1 高速道路用除雪トラックの仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>車両形式</td>
<td>KL-FW50MNZ（オートマチック車）</td>
</tr>
<tr>
<td>車両総重量</td>
<td>21,850kg</td>
</tr>
<tr>
<td>全長</td>
<td>12,700mm</td>
</tr>
<tr>
<td>全幅</td>
<td>4,200mm</td>
</tr>
<tr>
<td>全高</td>
<td>3,750mm</td>
</tr>
<tr>
<td>最小回転半径</td>
<td>10.5m</td>
</tr>
<tr>
<td>機関出力</td>
<td>316kW/2,200min⁻¹</td>
</tr>
<tr>
<td>主変速機</td>
<td>ターボコンパクト付タイプ（トラックボックス式）センターデフ付き</td>
</tr>
<tr>
<td>副変速機</td>
<td>前進6段、後退1段</td>
</tr>
<tr>
<td>フロントブラウ</td>
<td>除雪幅 4,200～3,295mm（進行角可変、2分割可変）</td>
</tr>
</tbody>
</table>

路面調整装置

- 除雪幅4,200mm
 - ブレードモータ
 - ブレードミキサー

（1）路面調整装置の構造
路面調整装置（トラックグレーダ）は、トラックのホイールベース間に装置され、図2、図3に示すとおり、左右の独立した昇降機構とブレード部で構成されている。切削角度は、反転シリンダで調整し、万一の路面段差との突撃に対しては、図4のように安全装置が作動し、衝撃を回避する。

大型のブレードは、折畳み式（図2）及びスライド式（図3）により除雪幅を可変できるものがある。

（2）自動制御の基本構想
路面調整装置（トラックグレーダ）は、車両のホイールベース間に取付けられているため、オペレータが直接ブレードを目視確認できない。悪天候下での夜間作業では、オペレータの勘によらないかぎり、熟練作業が見られていた。

オペレータが判断を必要とする作業は以下のと
おりであり、自動化の対象としたのは作業姿勢への移行、押付け力の調整、ジョイント回避姿勢への移行、安全装置のワンタッチ復帰である。
① ブレードが除雪姿勢に移行したかどうか確認する。
② 压雪の状況を目視により判断し、ブレード押付け力を設定する。

(3) ブレード押付け力の制御
路面整正装置（トラックグレーダ）の自動制御において最も問題になるのがブレード押付け力の制御方法であり、従来から様々な方法が検討されてきた。
作業中のブレードは図-5及び図-6の状態である。図-5では押付け力不足、図-6では過度または押付け過ぎである。オペレータは、ブレードが路面をこする音でブレードの状態を判断していることに着目し、圧雪上のブレードの振動と舗装路面

図-5 作業中のブレードの状態（圧雪上）
図-6 作業中のプレードの状態 (舗装路面上)

図-7 路面による振動の差異

図-8 作業中のプレードの状態 (舗装路面上)

図-9 押付け力制御のフロー

（４） 制御のフロー
除雪作業の制御は、
① 作業装置の姿勢制御、
② 押付け力の制御、
の２つに分けることが出来る（図-9参照）。
作業装置の姿勢制御は、数種類のアクチュエータを順に作動させるシーケンス制御である。
作業装置の押付け力制御は、プレードの振動を検出し、所定の振動値と比較し、振動が大きければ押付け力を増加させるように制御する。この制御を常に繰返すことにより最適な押付け力を得ることが出来る。

（５） 操作盤
オペレータが除雪作業に専念でき、かつ初心者でも操作ができるように、操作に必要なスイッチを運転手の近くに配置し、モニタ等はオペレータ
4. おわりに

今後更に、道路交通量の増大及び通行車両の高速化が進み、高規格道路の延伸が予想されるなか、除雪体制のより一層の整備、拡充が必要となる。さらに、ITS の利用が始まり除雪分野にも応用できる情報、技術開発が望まれる。

岩崎工業では、ブラウおよびグレーダの大型化、自動化への取組み等除雪トラックの進歩に多大の努力を傾けてきたが、今後共
① IT 技術を応用した、除雪トラックの作業性、安全性の向上、管理体制の充実
② 自動化、気象、道路情報利用改善による労働環境の改善
③ 公害対策等による地球環境保全への対応等を積極的に取入れながら、除雪トラック及び除雪作業の抜本的改良に取組む所存である。なお、路面整正装置（トラックグレーダ）の自動操縦装置は建設省北陸地方建設局と岩崎工業株式会社との共同開発製品である（特許第 2571535 号、特許第 1994478 号）。