| 02-121 | クラッシュバケット工法 (CBS工法) | 杉崎基礎 |

概 要
従来の大口径（φ800 mm 以上）既存杭の引抜き方法は、ケーシングチューブ等で既存杭の周辺摩擦を切り、大型クレーン（150 t以上）または、油圧ジャッキ等で既存杭を地上に引上げながら、プレーカや圧縮機で切断を行う方法が一般的であった。最近では、敷地面積が狭い場所での既存杭引抜き工事が増えており、大型クレーンを使用出来ない等の問題が発生している。そこで、大型クレーンとプレーカや圧縮機を使用しない既存杭引抜き工法として開発されたのがクラッシュバケット工法（CBS工法）である。

本工法（図-1, 図-2）は、①クローラクレーンでケーシングチューブを全旋回式ポーリングマシンにセット。②全旋回式ポーリングマシンを既存杭位置にセット。③クラッシュバケット（写真-1）をケーシングチューブ内に挿入。④ケーシングチューブ・クラッシュバケット回転圧入。⑤クラッシュバケット回転シャル閉込み。⑥杭切断完了。⑦切断杭（写真-2）排出。③～⑦の繰返し作業で既存杭を引抜く。

特 長
① 大型クレーンを使用しないので機械設備が少ない。
② プレーカ・圧縮機を必要としないので低振動・低騒音工法である。
③ 既存杭引抜き後もケーシングチューブで孔壁を保護しているので、周辺地盤への影響がない。
④ 既存杭を引抜きながら、1.0～2.0 m 程度の長さに切断出来るので（写真-2）そのまま運搬車両に積める。

用 途
・既存杭（大口径基礎杭）引抜き工事
・地中障害物撤去工事

実 績
2004年9月1日（水）当社モーターブールにてφ1000 mm の場所打杭引抜き試験工事を公開で実施

工業所有権
・特許申請中

問合せ先
杉崎基礎（株）本社工事部
〒950-3134 新潟県新潟市新崎 709-2
Tel：025(259)8600, Fax：025(259)8610
開発の背景
近年、都市部でシールドによる道路トンネルの建設が増加している。道路トンネルは通常、住民や構造物の移動を妨げることなく、浸水や地震などの地盤改良を行い、坑内から人力で切削する方法は道路トンネルの大断面では工費、工期が大きく安全性も課題がある。このため従来のシールド道路トンネルはアクアラインのように路肩幅を広く（全路幅）した大きな断面で全線建設されていた。

ES-J工法はこのような課題に対し、地盤改良を必要とせずに坑内から安全に拡幅作業が可能な工法である。必要な部分を経済的に安全に拡幅できるため、トンネル全長を通る路肩幅（半路肩）にしてシールドの掘削外径を小さくすることが可能となり、トンネル構造コストを低減できる。

工法の概要
図1にSeg-Jet工法の概要図を示す。本工法は、本線シールドコンクリート構造時にシールド機内で組み立てセグメントを任意の位置で押出し、トンネル断面を拡幅する工法である。拡幅作業は、本線トンネルの縫合と並行して行える。

![図1 Seg-Jet工法概要図](image)

本線シールドトンネルは通常のシールド機で掘進する。シールドトンネル拡幅区間の掘進時には拡幅可能なセグメントをシールド機内で円形に組立る。シールドトンネルの拡幅は、拡幅するセグメント背面の土砂を超高圧水で切削しながらジャッキシステムにより1リングずつセグメントを押出す。超高圧水での切削は掘削圧縮および排泥量を制御して周辺地盤への影響を最小限に抑制する。所定の押出しが完了後、押出したセグメントを周辺セグメントとボルトで固定し、その外側周囲に込め入れて注入して拡幅が完了する。なお、平成15年11月から約半年間でわたって実証実験を実施し、高圧下水への対応とセグメント押出しの施工性能を確認した。

工法を構成する技術
1. 同時多噴射切削システム：このシステムは、押出し用セグメントに多数の孔を設け、孔から切削ロッドを出し、超高圧水と高圧エアの噴射により地山を切削する。
2. 地山安定管理システム：切削・押出し中に突出するセグメントにかかる水圧を推移を計測し、押出しセグメント背面の必要な水圧を保持し、掘削土砂の過剰取込みを防止することで、周辺地盤への影響を最小限に抑制する。
3. ジャッキシステム：セグメントを押出す各ジャッキのストローカ長はジャッキにかかる荷重のばらつきにかかわらず±1mm以内に制御が可能である。このため、セグメントを常に一定の角度に精度よく押出すことができる。
4. 耐高圧水シールシステム：押出し用セグメント周間のシールは矩形シール等を組合わせて構成し、高圧水圧においてもセグメント押出し時に発生する摺動力微差から漏水を防ぐ。

特徴およびメリット
1. トンネルの拡幅に地盤改良を必要とせず、またセグメントを押出すための地山切削装置や押出し装置が簡易である。さらに切削した土砂の坑内運搬や地上の処理装置は切削した土砂が泥水となるため、本線シールドトンネルを掘進するためにの泥水機械システムや泥水処理装置を利用でき、トンネル断面の拡幅が経済的である。
2. 超高圧水の噴射は押出しに必要な制御した範囲の切削が可能であり、さらに地山切削時の地山安定管理システムと押出し直後の制御に注入により、トンネル拡幅時における地盤変状を抑制できる。
3. トンネル断面の拡幅する作業において地山に接することがなく、全ての作業がトンネル坑内で可能となるため安全である。

問合せ先
清水建設(株)土木事業本部技術開発部
〒107-8007 東京都港区芝浦1-2-3 シーバンスS館
Tel：03(5441)0518；Fax：03(5441)0512
新工法紹介

| 04-269 | 曲がりオーガー大口径脚部補強杭工法（BAF工法） | 鹿島建設 |

概 要
低士被り部や都市部などで、山岳工法によりトンネルを構築する際の大きな課題は、地表面沈下や周辺既設構造物への影響を極力抑えることである。特にトンネル支保工脚部位置で発生する沈下（脚部沈下）は地表面沈下の大きな原因となる。これまでには対策工としてフットバイアル工に代表される脚部補強杭工法が採用されてきたが、直径100mm前後の鋼管を切羽後方で施工するために沈下抑制効果は低く、削孔水により脚部周辺地盤が乱されるなどの問題があった。そこで、剛性の高い補強杭（超高強度コンクリート補強杭）を支保工設置前に地盤を乱すことなく施工でき、トンネル切羽前方の脚部を効果的に改良できる「曲がりオーガー大口径脚部補強杭工法（BAF工法）」を開発した（図-1、写真-1）。

写真-1 BAF工法イメージ図

写真-2 施工状況

写真-1 機械全景写真

特 長
1. 高品質、高剛性の脚部補強工
・曲がり削孔を用いることで、切羽前方に先行補強が可能であり、支保工建込みに高剛性の補強杭が完成。
・オーガー補強なので地山を乱さず施工が可能。

・φ500mmの大口径セメント系固化杭を最大3.5mまで造成可能。
2. 環境に有利
・排土処理がなく産業廃棄物の軽減が可能。
3. 低コスト
・同等の剛性を有する脚部補強工を従来工法にて実施した場合と比較し約20%のコスト削減が可能。

用途
輕部沈下が問題となる山岳トンネル

実 結
田名部川温城基幹河川改修工事（写真-2）：青森県むつ市の水路トンネル（NATM区間480m）にBAF工法が採用された。同トンネルは土被りが4〜15m程度と小さく、直上には住宅が密集しているため、トンネル掘削に伴う地表面沈下を最小限に抑制することが絶対条件であった。事前解析においては過去大脚部沈下が想定されたが、BAF工法による剛性の脚部補強を実施した場合、脚部沈下が約20%に抑制可能な結果となった。実施工ではトンネル掘削による地表面沈下は事前解析の値を下回る沈下量となり、周辺環境に影響なく工事を進めている。

工業所有権
鹿島建設、日本基礎技術

問合せ先
鹿島建設(株)土木管理本部土木工務部ダムトンネルグループ
〒107-8388 東京都港区元赤坂1-2-7
Tel：03(5474)9138, Fax：03(5474)9145
日本基礎技術(株)技術本部
〒150-0031 東京都渋谷区桜丘町15-17
Tel：03(3476)5701, Fax：03(3476)4551
新工法紹介

04-270 薄肉二次覆工用レコパネル工法

西松建設

概要
都市型洪水対策として整備が進められている雨水幹線シールドトンネルでは、一次覆工のRCセグメント部は二次覆工省略が多いくなっている。しかし、管路を敷設する道路線形により、鋼製セグメントを使用しなければならない区間においては、RCセグメントの内径に合わせて内面を平滑に仕上げるために薄肉の二次覆工が必要である。

西松建設は、下水道シールドトンネルの防食性を向上させるための内面被覆工法として開発していたFRP（ガラス繊維強化プラスチック）製のレコパネルを内面材に適用し、鋼製セグメントとの間隙に中詰め材を充填することで、内面平滑を実現し（写真-1）。小口径・急曲線での薄肉二次覆工の施工性、安全性の向上を図った。

概要
レコパネルによる曲線区間（R=15m）二次覆工状況

パネルは、厚さが6mm（ボルト固定部16mm）程度であり、隔数分割により曲線区間でリングを形成するため、曲线半径に応じてパネル最大幅が300mm以上とするテーパ形状とする。パネルは、鋼製セグメントに溶接止めされた連結部に、ボルトで固定することにより、所定の内径のリングとなる。パネルは外側用と内側用の2種類がある（写真-2）。外側用は外側用が受けた型に、内側用はかぶせ型となっており、構造物が重ね合わさる構造をしている（図1）。パネル自体およびボルト固定部には、RCセグメント目地部と同様のコーチング材を充填し、平滑性、止水性を確保する。中詰め材充填は3段階に分けて行う。

底部、側部の充填材は、内側用パネルを一時外した箇所から行い、頂部にはリング頂部に配置した充填孔から充填する。

特徴
1. 施工における安全性の向上：適応断面サイズ、施工延長等に制約はない。レコパネルは軽量で、パネル組立てに大型機械を使用しない、組立てに関する設備の移動作業がない等から、施工の安全性が向上する。パネルが連結部にやってセグメントと固定されているため、中詰め材充填での浮上がり防止等の支保工材の設置が簡略化でき、作業空間が確保できる。

2. 機能面の向上：レコパネルは、コンクリートに比べ耐摩耗性、耐腐食性に優れ、水理特性でも有利となる。

用途
- 鋼製セグメント部薄肉二次覆工

実績
- 小山市発注：喜沢第二雨水幹線新設工事
仕上がり内径2500mm、急曲線R=70m、15mの鋼製セグメント部二次覆工厚t=55mmに適用

工業所有権
- 特許申請中

問合せ先
西松建設（株）技術研究所土木技術研究課
〒242-8520 神奈川県大和市下野間2570-4
Tel：046(275)0055，Fax：046(275)6796