PC斜張橋「集鹿大橋」の斜ケーブル再生工事

竹中裕文・小川久志

1999年9月21日発生した台湾集集大地震で被災した集鹿大橋（PC斜張橋）の斜ケーブルを修復する工事を行った。元が施工時にケーブルソケット材の一部を供給したこともあり、台湾当局から復旧に向けた相談があった。工事の計画、実施にあたり、既設の斜ケーブルを最大限有効活用できる方法を検討した。その結果、工費縮減、工期短縮と併せ、環境に対する負荷低減も図ることができたAPSアンカーケーブルを用いることとされた。本報文は、世界でも例のないケーブルの再生工事の概要を述べるものである。

キーワード：海外工事、PC斜張橋、斜ケーブル、資源の有効活用、工費縮減、工期短縮

1. はじめに

集鹿大橋は、台湾のほぼ中央に位置する南投県集集鎮の集集と鹿谷を結ぶ道路に建設されたPC斜張橋で、瀬水渓と呼ばれる河川を跨いでいる（図ー１）。

本報は、1999年9月21日に発生した921集集大地震で被災を受けた。地震発生時は建設中であったが、震源地の集集にごく近く甚大な被害が生じた。主な被害は、

① 橋脚と主塔基部のコンクリートの

ひび割れと剥離（写真ー1）。

② 主塔と主桁との剛結部における主桁の橋軸方向鉄筋の座屈とコンクリートの剥離（写真ー2）。

③ 斜ケーブル1本の脱落（写真ー3）であった。

ケーブルの脱落原因は、脱落したケーブルが張力調整中であったことと判明した。しかし、その後の調査

写真ー1 主塔基部

写真ー2 主桁剛結部

写真ー3 ケーブル脱落部
で、斜ケーブルを定着しているソケット部に施工上の不具合が発見された。その数は、全ソケット136箇所の內100箇所に生じていた。そこで、ケーブルソケット定着部の性能を確保するために集雲大橋のすべての斜ケーブルを再生する工事を行った23,34）。

本報文では、斜ケーブルの再生方法、および現場施工について報告する。

2. 橋梁の概要と斜ケーブルの構造

（1）橋梁概要
橋梁諸元を表—1に、一般図を図—2に示す。

<table>
<thead>
<tr>
<th>橋梁部位</th>
<th>形式</th>
<th>2径間連続PC鋼管橋</th>
</tr>
</thead>
<tbody>
<tr>
<td>橋長（両間長）</td>
<td>240 m（120 m + 120 m）</td>
<td></td>
</tr>
<tr>
<td>総幅員</td>
<td>34 m</td>
<td></td>
</tr>
<tr>
<td>材質構成</td>
<td>梁長7.75 m（2床版） + 歩道1.5 m 上行線</td>
<td></td>
</tr>
<tr>
<td>ケーブル種別</td>
<td>PC鋼より線、工場集団型ケーブル</td>
<td></td>
</tr>
<tr>
<td>ケーブル密集中</td>
<td>APSアンカー</td>
<td></td>
</tr>
<tr>
<td>ケーブル本数</td>
<td>34本=32本</td>
<td></td>
</tr>
<tr>
<td>ケーブル長</td>
<td>28.6 m〜125.4 m</td>
<td></td>
</tr>
</tbody>
</table>

ケーブルの組立でも特別な機材を必要としないため、現場作業の施工性に優れている。

（2）斜ケーブルの構造
ソケットとケーブルの構造を図—3に示す。この構造の特長は下記のとおりである。

① ケーブルは、端締めつきPC鋼より線を用い、表面を高密度ポリエチレンで連続押出し被覆した工場製品のマルチケーブル（図—3）で、高い防錆・防食性能を有している。

② PC鋼より線のソケットへの定着は、PC鋼より線の端部に圧着グリップ加工を施し、ソケット定着部に設けた縫の巻状に配置された座敷孔に圧着グリップを定着させるものである。圧着グリップの加工は、コンパクトなジャッキを使用し、ソ

3. 施工上の不具合と再生の方法

ケーブルの施工における不具合は、以下のとおりである。

① 疲労強度を向上させる目的でソケットに充填するエポキシ樹脂が充填されていない。

② PC鋼より線がソケット部付近で剥き出しになっており、防食されていない。

③ PC鋼より線を定着するための圧着グリップが正しく施工されていないため、PC鋼より線の確実に定着されていない。

ケーブルを健全な状態に再生するために製作、工費、および工期の観点から評価を行った。表—2に比較検討結果を示す。総合評価でAのケーブル転用、ソケット現場取替え案に決定した。

本橋のケーブルの種類は、3タイプ（PC鋼より線の本数が37本、43本、55本）ある。したがって、ケーブル転用は、図—4に示すようにタイプごとに長さの長いケーブルを下段の短い側に移設させることによっ

作業手順は、ケーブルを取外した後、新規取付け位
表-2 ケーブル再生方法の検討および評価

<table>
<thead>
<tr>
<th>修復案</th>
<th>検討</th>
<th>評価</th>
<th>総合評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>〇</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

ケーブル：転用
ソケット：現場取替え

製作
- 不具合のあるソケットのみを製作して交換する。
- 新たに製作するケーブルは12本。

工期
- 新たに製作するケーブルは12本。

ケーブル：転用
ソケット：現場取替え

製作
- 不具合のあるソケットのみを製作して交換する。

工期
- 新たに製作するケーブルは12本。

ケーブル：転用
ソケット：現場取替え

製作
- すべてのソケットを新たに製作する。
- すべてのケーブル88本を新たに製作する。

工期
- 現場で多本数のケーブルを並行して製作出来るため、ケーブルを転用する場合と比べて現場工期は短い。

4. 実施にあたっての検討

（1）主桁の支持方法

本橋のようなPC斜張橋では、主桁の自重が大きい。
したがって、一部のケーブルを取外した場合、主桁に
大きな負荷が生じるため、あらかじめペントで主桁を
支えておく必要がある。また、ケーブルの取替えを行う
場合、ケーブル定着間距離が変化しないことが望ま
しい。これらのことから、コンクリート基礎を有する
強固なペントを用いて、ケーブル支持点を含めた橋軸
方向に約6m間隔で全長にわたって支持した（写真-4）。

（3）ケーブルの最終張力

完成時におけるケーブルの張力は、詳細設計で定め
られている。この張力は、主桁に導入されるプレストレスに影響を与えるので、定められた張力の範囲内に
納まっている必要がある。しかし、本橋は地震によって想定外の変形が生じているため、所定の張力を導入しても、路面の高さが設計どおりにならないと考えられる。その際、張力の調整を行うことで路面の高さを改善することが考えられるが、大きな地震で被災したことに鑑み、設計で定められた張力を優先することに決定した。なお、管理目標値は±10%以内とした。

(4) 工程
工事の概略工事を表-3に示す。ビートと足場の撤去、および歩道部線のコンクリート補修を含めた工事全体の工期は2004年7月末に決められていたので、ケーブルの補修工事は6月末までに完了させる必要があった。また、アンカーの部分、およびケーブルは日本で製作するため、これらの製作期間を考慮すると、現場作業は4月初めからとなり、ケーブルの修復・交換作業の期間は実質的に3カ月以内とする必要があった。

表-3 全体概略工程

<table>
<thead>
<tr>
<th></th>
<th>1 月</th>
<th>2 月</th>
<th>3 月</th>
<th>4 月</th>
<th>5 月</th>
<th>6 月</th>
<th>7 月</th>
<th>8 月</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベーパル・アンカーの製作、現場組立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ベーパル取付・修復、ケーブル取付け</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>歩道部線のコンクリート補修、ベーパル・足場撤去</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

再生するケーブルの本数を考えると、3カ月（90日）という日数は短いと思われた。作業内容を詳細に分析し、ケーブルの取外し、取付けの作業効率を上げて、1日に取付ける取外し可能な本数を多くすることが必要と考え、下記の対策を講じた。

① ケーブルを架設するクレーンは、大きな移動距離を確保出来るケーブルクレーンとした。
② 緊張用のジャッキは、大きく、重く、ハンドリングも悪いので、移動距離を少なくするよう、橋梁架桁の全4セル（左右で2セルずつで4セル）にそれぞれ配備した。

5. 実施工

写真-5に現場の状況を、写真-6に圧着グリップ加工の作業状況を示す。ジャッキはコンパクト、軽量で持ち運びも容易である。圧着加工を含めたソケットの組立て作業は、特殊な技術を必要としないので、一般的の作業員が手順を覚えただけで施工出来る。圧着グリップが正しく圧着されているかは、写真-7に示すように、グリップ部の長さを測ることで確認を行うことが出来る。再生完了したケーブルを写真-8に示す。写真-9にケーブルの取付け状況を示す。
図5 ケーブル再生工事の実施工程

図6 ケーブルの最終張力（R側）

図7 高さの高さ

写真10 再生した集鹿大橋

全ケーブル68本の再生を、2カ月半（75日）で完了させることができた（図5）。休日を考慮すると、1日1本以上のベースでケーブルを再生したこととな

6．まとめ

本工事は、不具合の部分のみを取替える方法により、健全な部分を最大限度再利用し、斜ケーブルの再生が行えたことに意義がある。維持・補修関連分野においても、使用可能なものは最大限再利用して再生するという発想が重要であると考えられる。

参考文献
1）山崎、幸夫、池田、小野：台湾集鹿地震で被災したPC 鋼管構（集鹿大橋）の詳細分析、構造工学論文集、Vol. 50 A, 2004, 3
2）児玉、謝、谷原、久保、小川、小坂：集鹿大橋のケーブル保険工事、構造工学論文集、Vol. 39, 2005, 04
3）児玉、謝、馬、久保、谷原、小川：集鹿大橋再生接続工事、道路工学論文集、第31巻、第11期、2005, 06

筆者紹介
竹中 裕文（たけなか ひろふみ）
株式会社ハルテックス
取締役兼執行役員
技術グループ
設計部長
工事

小川 久志（おがわ ひさし）
株式会社ハルテックス
技術グループ
設計部
技術開発チーム
サブマネージャー