特別報文

横浜市地下鉄におけるコンクリート側壁の塩害の 調査と耐久性診断システムによる評価

東 邦 和・宮 村 貫 雄・青 木 進

コンクリート構造物の長寿命化および維持管理において,構造物の劣化要因として深刻な問題とされて いるのが塩害による早期の鉄筋腐食である。横浜市営地下鉄高島町駅部において躯体コンクリートの維持 管理を目的として,立坑躯体壁で塩害の調査を行った。開発した装置を用いて背面水圧のある箇所での貫 通コアを採取し,診断・評価システムによって塩害劣化の進行予測を行った結果,維持管理によって健全 性を確保できることが判った。

キーワード:コンクリート、塩害、劣化予測、貫通コア採取、耐久性診断システム

1. はじめに

急速な経済発展とともに整備されてきた社会資本の 基盤であるコンクリート構造物の長寿命化および維持 管理の重要性が認識されるようになってきた。

コンクリートの劣化の中でも、深刻な問題とされて いるのが塩害、中性化による早期の鉄筋腐食である。 特に塩害は劣化の進行が早く、鉄筋腐食によりひび割 れ、錆汁等が発生し、美観・景観上の問題が生じる。 さらに劣化が進行すると、コンクリートの剥離・剥落 といった劣化現象により、安全性、使用性の機能に問 題が現れてくる。

横浜市営地下鉄高島町駅部において,上り線横浜側 坑口付近について,塩化物イオンの侵入の状況を調査 した。この調査には背面水圧のある場所でも貫通コア を採取できる装置を開発して使用した。また,パソコ ンによる耐久性診断・評価システムを用いて塩害の進 行を解析した。これらの結果について紹介する。

2. コンクリートの塩害調査

(1) 調査対象構造物の概要

高島町駅部の横浜方に位置する平沼町立坑の,上り 線横浜側坑口付近において,塩化物イオンの侵入の状 況を調査した。高島町駅部平面を図-1に示す。

平沼町立坑は 1972 年 3 月に地中連続壁の築造が開 始され,立坑の完成は 1974 年 2 月である。その後, シールド工法により高島町駅部が掘削され,建築工事, 軌道工事,試運転を経て,1976 年 9 月に地下鉄の供 用が開始された。今回の調査対象の立坑側壁コンクリ ートは,築造後約 33 年が経過したものである。立坑 の形状は幅 35.7 m 長さ 16.0 m 深さ 31.0 m であり,躯 体壁の厚さは 1000 mm である。

図一1 横浜市営地下鉄高島町駅平面図

(2) 調査の概要

本調査に先だって,2003年に平沼町立坑側壁部を 中心としたコンクリートの劣化調査が実施された。側 壁部の劣化は,躯体コンクリート内側の鉄筋の腐食に よりコンクリートに腐食ひび割れが発生しており,部 分的に鉄筋の発錆によりかぶりコンクリートの剥離と 鉄筋の断面減少が見られる状況である。

本構造物は海岸近くに位置し,周辺の地下水は塩分 を含有している。側壁内側から浸透している外来塩分 は,地下水の漏水によるものと考えられた。側壁から 漏水を採取し,イオンクロマトグラフにより分析した 漏水中の塩化物イオン量調査分析結果を表—1に示 す。平沼町立坑上り線坑口部の漏水は,海水成分を多 く含むものであることが判った。一方,駅部反対側の 高島町立坑では,かぶりの薄い部分は鉄筋が腐食して いるものの劣化の程度が比較的軽く,漏水中の塩化物 イオンの濃度は低い結果であった。また,立坑側壁部 で深さ 500 mm のコアを採取し内面からの塩化物イオ ンの分布を求めて,躯体内面側の劣化原因は漏水中の 塩分が表面から侵入したものであることが分かった。

表一1 漏水中の塩化物イオン量分析結果

採取位置	塩化物イオン濃度(mg/l)		
平沼町立坑 B4F	4580		
	B3F (海側)	995	
同岛时卫机	B4F (山側)	216	
河川水 (参考)	5.8		
海水 (参考)	19000		

(3) 貫通コア採取による調査

地山側の情報が得られていないため,躯体外側の塩 化物イオン濃度の測定と外側鉄筋の健全性の調査を目 的として,2006年に貫通コアの採取を実施した。平 沼町立坑地下4階の調査位置を**写真-1**に示す。開 発した躯体貫通型コアサンプリング装置を**写真-2** に,水圧に対抗する加圧タンク装置を**写真-3**に,

写真一2 躯体貫通型コアサンプリング装置

写真一3 加圧タンク装置

写真一4 一次止水(薬液注入)

一次止水状況を**写真**—4に示す。開発した装置は, 防水管に与圧を与えて削孔を行うものである。

採取したコアを**写真**—5に示す。躯体と背面の連

写真-5 採取コア(全長 1400 mm)

図ー2 塩化物イオン分布 (全塩分量)

供試体採取位置圧縮強度
(N/mm²)見掛け密度
(kg/m³)躯体①部-2230躯体中央部41.12230躯体⑤部-2230

表一2 圧縮強度試験結果

壁部を含めて1400 mmの長さのコアを採取した。採 取コアから測定した塩化物イオンの分布を図-2に 示す。地山側からは,最大で5.5 kg/m³の塩化物イオ ン濃度が測定された。圧縮強度測定結果を表-2に 示す。側壁コンクリートの中央部の圧縮強度は 41.1 N/mm²であった。設計基準強度が21 N/mm²で あることから強度に問題のないことが確認された。

3. 耐久性診断・評価システム

(1) システムの概要

開発したコンクリート構造物の劣化診断と劣化進行 予測および補修による延命予測を行う耐久性診断評価 システムを紹介する。このシステムにより,リニュー アルの項目である補修時期・方法・コストをデータに 基づいて提案することができる。

システムは、①劣化原因を判定するグレーディング、 ②塩害・中性化およびこれらの複合劣化,硫酸劣化の 進行予測,③劣化進行予測結果を使用したライフサイ クルコストの算定から構成されている。ここでは,横 浜市地下鉄において用いた塩害の進行予測について述 べる。

塩害の進行予測では、構造物を取り巻く環境条件に よる劣化外力およびコンクリートの品質,またはコア サンプリングなどによる劣化測定データを用いること ができる。また、コンクリートを補修した場合の検討 も行うことができ、構造物の劣化進行予測から、補修 工法とその時期を考慮して、補修の効果の比較が可能 である。

(2) 塩化物イオンの浸透解析

コンクリート中の鉄筋は不動態皮膜で保護されてい る。この不動態皮膜は塩化物イオンがコンクリート中 に存在すると破壊され鉄筋の腐食が始まる。発錆によ りコンクリートにひび割れが生じさらに鉄筋の腐食が 加速する。

塩化物イオンには「初期塩分」と「外来塩分」があ る。初期塩分は海砂に含まれる等でコンクリートに導 入されたものである。また外来塩分はコンクリート硬 化後に潮風,海水飛沫などから供給されコンクリート 表面から浸透するものである。これらとセメントの種 類および水セメント比を計算条件として入力する。塩 害計算条件入力画面を図-3に示す。

塩化物イオンの拡散の予測には、式(1)の Fick の

図-3 塩害計算条件入力画面

拡散方程式を適用した。 $\frac{\partial C}{\partial t} = Dc \left[\frac{\partial^2 C}{\partial x^2} \right]$ (1)ここに *C*:塩化物イオン濃度 Dc: 拡散係数 x:コンクリート表面からの距離 *t*:時間

塩害に関するデータを得ることを目的に高塩分環境 下の暴露試験を実施した。使用したコンクリートの配 合は水セメント比 50%のものを例として表-3に示 す。試験における塩化物イオン濃度と解析値を図-4 に示す。これは海水飛沫があたる環境下での Case-1 の計測結果である。暴露期間3ヶ月,20ヶ月の計測 結果と診断・評価プログラムで求めた解析結果の塩化 物イオン濃度分布を示している。解析結果は計測値か ら最小自乗法により表面塩化物濃度および拡散係数を 求め式(1)により計算したものである。計測値が良

No.		ļ	水セメント比	単位量(kg/m ³)										
			W/C (%)	水(W)	セメン	ኑ (C)	細骨材(S) 粗價	粗骨材(G)					
Case-1			50	185	37	0	767		977					
	6.0	1	普通ボルトランドセメント W/C=50% 暴露期間											
ي ۳	5.0	K		•••••		 	- 解析結果	! (3ケ	月) 1					
塩化物濃度(kg/r	4.0	β	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓											
	3.0	F	. h	•••••			暴露試験	<u> १(20</u> 5	月)					
	2.0	-												
	1.0		······À			• • • • •								
	0.0	L	And			*****	800000000000000000000000000000000000000							
		0	1	2 3	4	5	56	7	8					
コンクリート表面からの深さ(cm)														
図ー 4 塩化物イオン濃度分布														

表一3 配合

好に模擬されている。

同定した拡散係数を用い 50 年後までの塩化物イオ ン濃度を予測した結果を図-5に示す。コンクリー ト表面から2cm~8cmまでの位置での濃度分布の 時間変化を示したものである。また図中の発錆限界濃 度はコンクリート標準示方書において示されている鉄 筋の発錆限界濃度である。深さ2cmでは約2年後, 6 cm では 11 年後に発錆限界濃度に達している。

図-5 塩化物イオン濃度予測結果

本診断プログラムは、コンクリートを補修した場合 の検討も行うことができる。補修工法にはコンクリー ト表面からの塩分浸透を遮断する表面被覆とコンクリ ートを撤去して打ち替える断面修復がある。

断面修復の概念を図―6に示す。断面修復工で置 き換えられたコンクリートは塩化物イオンを含まず, その後の経過によりコンクリート表面から塩化物イオ ンの補修部分への浸透が始まることになる。その結果, 塩化物イオン濃度が鉄筋の発錆限界濃度に達する時間 を遅くすることができる。補修を施工した場合の構造 物の劣化予測には補修材料の劣化を考慮しており、特 性が変化しない期間では拡散係数は変化しないものと し,劣化期間ではシグモイド関数を用いて拡散係数を 大きくしている。補修を行った場合の塩化物イオン濃 度の予測結果を図-7に示す。鉄筋のかぶりを4cm と想定して、コンクリート表面からの深さが4cmの 位置の濃度変化を示した。断面修復は10年後に深さ 4 cm まで行い,表面被覆は新設時に行ったとして解 析した。断面修復では補修後に塩化物イオンが補修部 側にも拡散し濃度が小さくなる。また、表面被覆では 拡散係数が小さくなり濃度の増加勾配が小さくなって いる。補修をしない場合は5年後,表面被覆は17年 後,断面修復は28年後に鉄筋の発錆限界濃度 1.2 kg/m³に達している。

図-6 断面修復の概念

図-7 補修した場合の塩化物イオン濃度

4. 躯体側壁の塩害の進行予測

地下鉄立坑部外壁の塩化物イオンの測定結果を基に コンクリートの拡散係数と表面塩化物イオン濃度を逆 算し、今後の塩化物イオン濃度の推移を予測した。 躯 体の塩化物イオン濃度の経過年数ごとの分布を図-8 に示す。現在値を30年経過として、50年目には鉄筋 かぶり 5.4 cm の場合では発錆限界濃度 1.2 kg/m³ に達

図-8 塩化物イオン濃度分布

する予測である。

表面からの深さが 5.0 ~ 15.0 cm において, 経過年 数年の塩化物イオン濃度の推移を図-9に示す。建 設後 30 年に深さ 15 cm までを断面補修材で置き換え たとしているため、この時点で濃度は低い値になって いる。深さ 10 cm 位置では建設後 30 年には塩化物イ オン濃度は、0.6 kg/m³程度であったが、補修後には 0 kg/m³に低下し、その後漸増している。なお、50 年経過以降に塩化物濃度が再び上昇しているのは、補 修材の性能劣化を考慮したためである。

5. おわりに

側壁コンクリートは,構造物内側から塩化物イオン の侵入により内側鉄筋に腐食が発生しているが、鉄筋 かぶりが大きいため,顕著な腐食ひび割れの発生は少 ない。背面からの塩化物イオンの侵入が確認されたが、 背面側の鉄筋の腐食は進んでおらず、躯体の劣化が今 後急速に進むことはないと考えられる。今後も、維持 管理より構造物の健全性を保持して行きたい。

JCMA

[筆者紹介] 東 邦和 (あづま くにかず) (株奥村組 技術研究所 材料・LCE グループ 主管研究員

宮村貫雄(みやむら みちお) (株)奥村組 東京支社 土木工事第3部 所長

青木 進 (あおき すすむ) 横浜市交通局 電車部 施設課 施設区 区長