特集≫ 災害・災害復旧

火山観測用航空機搭載型リモートセンシング装置 一装置の概要と浅間山の温度観測事例—

實渕哲也

防災科学技術研究所では、火山噴火の短期的予知や噴火災害状況の把握に役立てるため、火山体の表面 温度や降灰分布を画像計測できる、独自の火山観測用航空機搭載型リモートセンシング装置の開発とその 活用を 1980 年代より実施している。ここでは、防災科学技術研究所での最近の技術開発の成果と、同装 置による火山観測結果を報告する。

キーワード:航空機、リモートセンシング、火山、噴火災害、表面温度、熱的活動

1. はじめに

日本には108の活火山がある。火山の噴火による被 害を軽減する最善の手段は、的確な情報にもとづく 適切な避難である。的確な情報は、火山の活動状況 をできるだけ正確に評価するための指標となる現象を 多角的に観測することで得られる。その代表的なもの は、火山活動に由来する地震活動、地殻変動、電磁気 的変化、温度、火山性ガス等の観測である。最近まで の20年ほどの間、これらの観測技術は、着実に進歩 している。実際、2000年の有珠山噴火、三宅島噴火、 2004年、2009年の浅間山噴火等では、噴火の直前予 知や、噴火活動の状況把握が、これらの観測情報をも とに行われ、被害の軽減につながっている。

本報文では、上にあげた火山活動状況評価に活用す る代表的観測項目のうち、防災科学技術研究所(防災 科研)で実施している、温度や火山性ガスの観測に関 するリモートセンシング技術の開発に焦点をあて、そ の最近の進歩を報告する。またこの技術を用いた、実 際の噴火活動の観測事例として、浅間山の温度観測事 例を紹介する。

火山観測用航空機搭載型リモートセンシング装置

火山は噴火すると地表からは近づけない場合もあ り、火山の状況を把握するには、衛星や航空機を活用 したリモートセンシング技術が役立つ。とりわけ、航 空機によるリモートセンシングは、航空機の機動力を 生かした観測が可能で、災害現場の情報を緊急に計測 することができ、災害時の状況把握手法として利用価 値が高い。また、平常時の火山体表面温度分布を把握 することで、異常時の火山体の熱的な活動状況把握が 行え,噴火災害の推移の評価に役立てることもできる。

防災科研では、衛星による観測では達成できない、 火山の熱的活動評価に役立つ高空間分解能(1~3m 程度)熱画像データの取得や、噴火活動に対応した機 動的な火山観測を実現する火山観測用航空機搭載型 リモートセンシング装置の開発を、1980年代より継 続的に実施しており、1990年に初代装置 VAM-90A、 2006年に2代目の装置 ARTS を完成させた。

(1) VAM-90A

VAM-90A(火山専用空中赤外映像装置)は、火山 体の表面温度観測,降灰状況把握およびその観測手法 の開発を主目的に,防災科研が1990年に製作・開発 した航空機搭載型のリモートセンシング装置である。

VAM-90A は、図―1 に示す Whisk broom 動作で

図-1 VAM-90A の観測の様子(Whisk broom 動作)

データを取得する。航空機に搭載された VAM-90A は, 対地高度 $1 \sim 6 \text{ km}$ から航空機の機首方向に垂直な面 内で直下点を中心に cross-track 方向に $\pm 30^{\circ}$ の角度 でミラーを走査し,可視光から赤外光までの光を 9° の波長帯 (Band $1 \sim 9$)で捉える。この走査と航空機 の進行 (along-track 方向)を利用することで地表の 分光画像情報を計測する。VAM-90A の走査検出器部 を図-2に, VAM-90A の主な諸元を表-1に示す。

20

図-2 VAM-90A の走査検出器部

表—1 VAM-90A の主な諸元

主な機器構成	性能	用途·特徴
可視光センサ Band1 Band2	$0.51 \sim 0.59 \mu$ m $0.61 \sim 0.69 \mu$ m	降灰域の分布把握,植 生の活性評価,水域の 濁度評価
最高空間分解能	3m	
<mark>近赤外線センサ</mark> Band3 Band4 Band5	0.80~1.10 μ m 1.55~1.75 μ m 2.08~2.35 μ m	降灰域の分布把握, 植 生の活性評価
最高空間分解能	3m	
赤外線センサ Band6 Band7 Band8 Band9 最高空間分解能	3.50~4.20 μ m 4.30~5.50 μ m 8.00~11.00 μ m 11.00~13.00 μ m 1.5m	地表の温度分布把握 (−20~1500℃)
幾何補正関連装置	動揺補正装置 光ファイバージャイロ	手動幾何補正作業 (処理時間:2~3日)

VAM-90A は、赤外センサ(Band6 ~ 9)の高空間 分解能により、数 m 以下の空間スケールで出現する 地熱由来の高温スポットの温度が、周囲の常温域と空 間平均されずに計測可能である。また赤外センサの広 い温度観測レンジ(-20~1500℃)と精度(NETD: 0.2K@300K)により、通常の地表面から溶融した溶 岩(約1100℃)の温度分布まで計測可能である。さ らに、緊急時の情報提供を想定した速報機能(電話回 線利用)により,着陸後20分以内に観測画像の一部 を速報画像(1MB程度)として提供可能である。

防災科研は VAM-90A を用いて, 1990 年から 2005 年までに, 日本の 20 の活火山を観測した^{1).2)}。

(2) ARTS

防災科研は、2006年に、航空機搭載型放射伝達 スペクトルスキャナ(Airborne Radiative Transfer Spectral Scanner: ARTS)を開発した³⁾。ARTS は、 VAM-90A の後継機として開発された、高波長分解能・ 高空間分解能を有する最新鋭の火山観測用航空機搭載 型リモートセンシング装置である。

ARTS は, 図-3 に示す Push broom 動作で, デー タを取得する。ARTS は、対地高度 0.7 ~ 6 km から、 航空機直下のスリット状領域(観測角: cross-track 方向 40° (FOV), along-track 方向 0.49 ~ 1.2 mrad) を, その幾何形状を保持しながら分光し、波長別のスリッ ト状領域の形状を、2次元撮像素子上に投影、配置す る。素子のフレームレート,積算時間を適切に設定し, 航空機の移動にともない刻々と変化するスリット状領 域のデータを取得することで、スペクトル別の帯状の 画像を取得する。ARTS は中心感度波長が連続的に 異なる狭い周波数帯域幅(バンド)の複数のセンサを 有し、各バンドで地表の画像情報(空間情報)を得る と同時に、各画素についてスペクトル分布情報を計測 する。ARTS は、可視光から赤外光までの光を最大 421の異なる波長(超多波長)で観測できる。最高空 間分解能は、可視域で0.3 m. 近赤外~赤外域で0.85 m である。ARTSのセンサユニットを図-4に、主な 諸元を表一2に示す。

一般に,地表,大気,火山性ガスは,可視から赤外の電磁波(光)に対し,固有のスペクトル分布特性を もつ光学的特性(透過率,吸収率,反射率,放射率) を有する。ARTSの観測画像(超多波長データ)は,

図―4 ARTS のセンサユニット

表一2 ARTS の主な諸元

主な機器構成	性能	用途·特徴
可視光センサ 観測波長領域 band数 band幅 最高空間分解能	0.38 ~ 1.05 μ m 288 2.4nm 0.3m	 ・降灰域の分布把握, 植生の活性評価 ・スペクトル波形による 地表被覆物同定 (地質,植生,水の物性) ・高温計測(900~1200°C)
近赤外線センサ 観測波長領域 band数 band幅 最高空間分解能	0.95 ~ 2.45 μ m 101 15nm 0.85m	 ・降灰域の分布把握, 植生の活性評価 ・スペクトル波形による 地表被覆物同定 (地質,植生の物性) ・高温計測(300~1200℃)
赤外線センサ 観測波長領域 band数 band幅 最高空間分解能	8.00∼11.50 µ m 32 110nm 0.85m	 ・温度計測(-20~1200°C) ・スペクトル波形による 地表被覆物同定 (溶岩の物性) ・SO2ガスの濃度分布計測
幾何補正関連装置	空中直接定位 GPS/IMUシステム	 ・自動幾何補正(2hr以内), 精度0.3m ・地図との重ね合わせ可

各画素について,連続的なスペクトル分布情報を計測 できるため,画素を構成する観測対象物質の固有のス ペクトル分布特性が推定可能である。

ARTS は、この超多波長データの活用によって、 VAM-90A よりも火山体の表面温度観測精度が向上し、 さらに火山ガスの濃度分布計測もできるようになった。 また植生の変化や溶岩流など火砕物の分布もこれまで 以上の識別精度で観測できる。さらに観測データには 空中直接定位装置(GPS/IMU装置)による位置情報 が付加されており、地図に合わせた画像化も容易であ る。この様な ARTS の性能は、火山活動の現況や噴火 後の被災状況の迅速な把握に役立つと期待できる。

防災科研では、2006 ~ 2007 年度を ARTS の性能検 証期間とし、性能検証観測を完了した。これより、同 装置の公称性能が達成されていることを確認し、2008 年度から ARTS による火山観測を開始した。

3. 火山観測事例紹介:浅間山の温度観測

群馬・長野県境に位置する浅間山(標高 2568 m) は,活動が活発な活火山である。最近では,2003年, 2004年,2008年,2009年に噴火活動が記録されている。 防災科研は,これまでに VAM-90A(2005年以前)

と ARTS(2007 年以降)を用い,10回の観測を実施 している。これらの観測により,火口内温度分布の推 移をとらえることで,浅間山の熱的活動の推移を把握 できている。以下では,その観測結果を紹介する。

VAM-90Aによる観測(2000~2005年)

浅間山で火山性地震活動の増加が 2000 年夏頃より 認められたことを受け,防災科研は,浅間山の山頂火 口内温度分布観測を 2000 年 9 月より開始した。

[2000 年 9 月 ~ 2003 年 10 月 の 期 間]: 2000 年 9 月,10 月 (図-5 (a)),2002 年 8 月 (図-5 (b)), 2003 年 10 月 (図-5 (c)) に観測を実施した。図-5 (a) (2000 年 10 月) と図-5 (b) (2002 年 8 月) を比較すると,温度の上昇や噴気量,地熱分布域の増 加が認められる。しかし,火口内の東部,中央部,西 部に区別できる大局的な温度分布パターンが維持され ている。2003 年 2 月~4 月に極小規模噴火があったが, 火口内の大局的温度分布パターンは,図-5 (c) (2003 年 10 月) にかけて大きくは変化していない。大きな 噴火を伴わない場合,浅間山は比較的安定な熱分布形 状を維持していることが推定される。

[2004年10月~2005年10月の期間]:2003年に低 下した熱活動であったが、2004年の初夏頃から、浅間 山の地震活動の活発化とともに、火口内の温度上昇が 認められるようになり、浅間山は2004年9月1日に 21 年ぶりの爆発を伴う噴火をした。その後, 9 月~12 月に複数回の噴火が記録された。我々は噴火活動中の 温度分布形状の把握を目的として、2004年10月7日 (図-5 (d)), 22 日に観測を実施した。火口内の温度 分布は噴火以前にくらべ図-5(d)のように大きく変 化し、噴気や高温部が増加した。これは火口底に出現 したマグマをとらえた結果である。この一連の噴火活 動が終了した後、我々は、火口内の温度分布形状把握 の為の観測を 2005 年 10 月 3 日 (図— 5 (e)) に実施し, 噴出した溶岩が徐々に冷えていった様子をとらえた。 この火口内の温度分布形状は、以後の熱的活動の推移 を把握する上で、基準となる熱分布データとなった。

(2) ARTS による観測(2007~2009年)

[2007年4月~2009年2月の期間]:2005年から

(d) 2004 年 10 月 07 日 10 時 27 分, 最高温度 639℃

(h) 2009 年 2 月 21 日 13 時 -14 時, 最高温度 67℃

図—5 (a) ~ (e) 2000 ~ 2005 年に VAM-90A で観測した浅間山の山頂火口温度分布。(f) ~ (h) 2007 ~ 2009 年に, ARTS で観測した浅間山の山頂 火口温度分布。対地高度 2000 ~ 3000m より観測,大気補正,オルソ幾何補正済み。2004 年 9 月~ 12 月には複数回の噴火活動があり,火口底 の温度やその分布の変化が観測された。この噴火活動が低下し,2007 年にかけ火口底が徐々に冷えていった様子や 2008 年に再び温度が上昇した 様子等が一連の観測で把握できる。 2007年にかけて浅間山の活発な活動はなかった。我々 はARTSの試験観測として、2007年4月12日に観 測を実施した(図一5(f))。その結果、2005年の温 度分布形状が保たれたまま、全体的に温度が低下し ていることを把握できた。その後、2008年夏頃より、 再び地震活動が活発化したため、2008年11月14日 (図一5(g))に温度観測を実施した。前回の2007年 4月12日のARTSによる試験観測結果と比較すると、 11月14日の輝度温度分布には、70℃以上の領域の拡 大や噴気の増加が認められる。また、2005年10月3 日(図一5(e))の観測結果と輝度温度分布の形状は 類似しており、爆発を伴わない熱的な活動状況の増加 を示している。

この後,2009年2月1日,浅間山は小規模噴火し た。この噴火は、関東地方に降灰をもたらすものであっ た。この噴火直後の熱的活動の推移を評価するため, 我々は 2009 年 2 月 21 日に浅間山の火口内温度観測を 実施した(図-5(h))。この観測では火口内に噴煙 が充満していたため、火口内の温度観測は、噴煙によ る減衰の影響を強く受けた。この影響を低減するため 約15分間隔で5回の繰り返し観測を行い、各画素に ついて5回の観測の最大温度を採用した温度分布画像 を図-5(h)のように求めた。2008年11月14日の 図-5(g)と図-5(h)を比較すると、火口底中心部、 北側、南側、西側、東側の温度分布形状は、大きくは 変化していない。火口底中心部の熱源の形状が3つに 分裂したように見える。今回と同程度(やや多い)の 噴煙の下で観測が行われた2004年10月7日の観測(火 口底にマグマが出現)では、短時間の繰り返し観測(5 回)を実施した結果、火口内の高温域は、噴煙の影響 が小さい場合は600℃程度に観測され、噴煙の影響が 大きい場合には300℃程度に減衰し観測されることを 確認している。仮に、今回 600℃程度以上の熱源が火 口内に存在すれば、そのエネルギーは、2004年10月 よりもやや少ない量である今回の噴煙を透過し、少な くとも300℃程度以上に計測されると思われる。しか し、今回の結果では、5回の観測いずれでも70℃以上 の温度分布は計測されていないことから、火口内には 少なくとも 600℃程度を超える部分はなく、2004 年の 噴火時の様に、火口底にマグマは出現していないと推 定される。以上より、2月の噴火後の浅間山の熱的活 動は、噴火前と比較し拡大していないと推定された。 この後,4月にかけ浅間山の火山活動レベルは低下し, 現在にいたっている。

4. 浅間山の放熱率(2000~2009年)

一連の観測結果から Sekioka らの方法⁴⁾ により求 めた浅間山の放熱率を図一6に示す。これより噴火 に伴って放熱率の増加が認められることがわかる。

図-6 浅間山の放熱率の推移(2000年9月21日~2009年2月21日)。 噴火に伴い、放熱率が大きくなる傾向が認められる。

5. おわりに

本報文で示した火山の熱的活動状況を推察できる観 測情報は,衛星リモートセンシングでは取得できない 航空機リモートセンシングならではの結果である。

防災科研では今後も火山観測用航空機搭載型リモー トセンシング装置の技術開発とそれを活用した火山活動 状況把握を実施し,火山の活動評価に資する有益な観 測情報の取得のための研究開発を実施する予定である。

JCMA

《参 考 文 献》

- 植原, 熊谷, 矢崎: 航空機搭載 MSS による雲仙岳火山の熱観測, 日本リモートセンシング学会誌, 487/493 (1991)
- 2) 實渕,鵜川,藤田,岡田,宮坂,赤池,松岡:航空機搭載型多波長走 査計による有珠山 2000 年噴火の多次期観測,火山,47,297/323 (2002)
- Tetsuya Jitsufuchi : Airborne Radiative Transfer Spectral Scanner: A new airborne hyperspectral imager for hyperspectral volcano observations, AGU 2007 Fall Meeting, V11D-0812 (2007)
- Sekioka, M. and Yuhara, K. : Heat Flux Estimation in Geothermal Areas Based on the Heat Balance of the Ground Surface, J. G. R., 79 (14), 2053-2058, 1974

[筆者紹介]

(定) 哲也(じつふち てつや)
 (強)防災科学技術研究所
 火山防災研究部
 主任研究員