特集≫≫ 防災,安全を確保する社会基盤整備

断層用鋼管の開発

長谷川 延 広・今 井 俊 雄

わが国には膨大な数の活断層が全国的に広く分布しており,水道ライフラインなど数多くの線状構造物 がこれらを横断して布設されている。断層横断部では,想定される変位量が桁違いに大きいことから,実 用的な対策が十分に整備されておらず,従来は断層を避けた路線選定を行うなどの消極的な対策が主流で あった。本論では,上記の課題を解決するため水道管路を対象に開発した「断層用鋼管」についてその概 要ならびに設計事例を紹介する。

キーワード:活断層、断層変位、水道用鋼管、ライフライン、耐震化、座屈波形、弾塑性変形

ш

1. はじめに

1995年兵庫県南部地震を契機に水道施設耐震工法 指針・解説¹⁾が1997年に改訂され,地中に埋設され る水道管路についても2種類の地震動レベル,施設の 重要度に応じた要求耐震性能が規定されたほか,液状 化に伴う地盤変状の影響についても言及され,地震動 と地盤変状の双方に対する耐震安全性照査の必要性が 認識されるようになった。ただし,活断層については 特別な言及はなされておらず,一般論として路線選定 においては良好な地盤を選定すべきである旨の記述 や,地盤急変部における伸縮可撓管の適用例等が示さ れているに過ぎない。

一方, ISO 2394²⁾ や Eurocode³⁾ など欧州連合を中 心に信頼性設計理論に基づく性能設計体系の構築が推 進されたことに呼応し,わが国においても性能規定型 設計法の普及が図られるようになってきた。水道施設 耐震工法指針についても上記の動向を踏まえ,従来の 仕様規定型に代わって性能規定型設計の考え方が導入 され,これまでの指針よりも具体的に構造物の目的と これに適合する機能および要求される耐震性能が明確 化された。ただし改訂指針⁴⁾ においても,活断層近 傍の水道施設に対して,十分な耐震性を有するよう配 慮すべきであることについては言及されたものの,実 際の対策については具体的な記述がなされていない。

ところで、2011 年東北地方太平洋沖地震では Mw 9.0 という観測史上4番目の大地震に伴って東北 地方の広い範囲で大規模な地殻変動が発生した。この 地殻変動によって福島県の塩ノ平断層(図-1参照)

図-1 塩ノ平断層の地盤変状(鉛直方向 1.8 m)⁵⁾

など各地で断層変位が生じたほか,活断層の動きが活 発化し,数多くの断層型地震が発生している。断層を 横断する水道管路に対しては上記のように伸縮可撓管 を連続的に多数配置するなどの対策が提示されている ものの,膨大なコストを要すために現実的に実施され ている例は殆ど無いのが現状であり,その意味では断 層横断部においては,これまで実用的な耐震対策が十 分に整備されていなかったものと言えよう。

著者らは、上記課題を解決するために「断層用鋼管」 を開発^{60,7)}した。断層用鋼管は、断層面前後の直管 部に予め山状の変形部(座屈波形部)を設けることで 断層変位の吸収の際に管路に生ずる変形の位置や変形 モードを制御する機能を有する水道用鋼管である。こ の機能により、断層面の滑りなど地震時に数メートル オーダーの極めて大きな地盤変状が局所的に発生した 場合においても漏水を生ずることなく内空断面を確保 して通水機能を維持することができる。本報では、開 発した断層用鋼管の概要ならびに設計事例を紹介す る。

2. 地震時荷重としての断層変位

図-2にその分布を示すが、わが国における活断 層はこれまでに 2.000 箇所以上⁸⁾ 確認されており、現 在も追加調査によって新たな活断層の存在が確認され ている。一般的な活断層の長さは数 km ~数十 km に 及び、さらにこれらの活断層が滑りを生じた場合平均 で2m以上の断層変位が生ずるものと考えられてい る。断層は、滑り面の方向によって正断層、逆断層、 横ずれ断層などに分類できるが、わが国における断層 の大半は逆断層型であると言われている。断層を横断 して布設された鋼管路を想定した場合, 正断層では管 軸に対して引張方向の強制変位が作用するのに対し て、逆断層ではその反対に軸圧縮方向の曲げが作用す る。このような強制変位を受けると、鋼管には図-3 に示すような座屈現象が生じる。座屈の発生位置は鋼 管の初期不整(製造上のごく僅かな非対称形状や管厚 の差など)に影響を受けるため、座屈が発生する限界 ひずみを推定することは可能でも, 座屈がどの部位に

図-2 わが国における活断層の分布⁸⁾

生ずるかを予測することは極めて困難である。また、 一旦座屈が生じてしまうと、その後の鋼管の変形がど のように進展するかを予測することも困難であり、変 形の進展状況によっては亀裂・漏水の発生に繋がるた め、地震動に対する鋼管路の耐震設計では、座屈発生 限界ひずみを基にした耐震安全性照査を行っている。

以上を踏まえて、本開発では逆断層を横断して布設 された埋設鋼管路を対象として、2m以上の断層変位 が生じた場合においても通水機能を維持できる鋼管の 開発を目標とした。

3. 断層横断部における要求耐震性能

前述のように、現行の耐震工法指針4)は性能規定 型設計を指向しており、地震動に対する埋設鋼管路の 要求耐震性能は表―1のように規定されている。

──── 地震動に対する鋼官路の安氷耐震1

地震動	要求性能	内容
レベル1	耐震性能1 (使用限界状態)	力学的特性が弾性域を超えない (許容ひずみを超えない)限界 状態
レベル2	耐震性能 2 (修復限界状態)	部分的に塑性化しても漏水が発 生しない限界状態

このとき、レベル2地震動に対しては修復限界状態 として、軸圧縮を受ける鋼管の座屈開始限界ひずみ相 当値が安全照査値として規定されているが、前述の座 屈現象における特性を考慮しているため、実際に漏水 が発生しない限界値(亀裂発生限界ひずみ)からは安 全側に大きくかけ離れている(ただしその度合は個体 差による初期不整の影響が大きく評価困難)ものと考 えられる。

一方、断層変位や地滑り等の大規模な地盤変状に対 しては上記レベル2地震動のケースと同様に、「部分 的に塑性化しても漏水が発生しない限界状態」が要求 されるが、照査値として座屈開始限界ひずみ相当値を 適用したのでは、その変位量の大きさから、対応が極 めて困難であると考えられる。

そこで、鋼管の座屈開始限界ひずみを限界値とせず、 亀裂発生限界ひずみまでの領域を有効に活用すること で、「部分的に塑性化しても漏水が発生せず、通水機 能を確保可能な限界の状態」を満足する構造を検討す ることとした。

開発した断層用鋼管は、断層の滑りを伴う大地震発 生後、長期にわたって通水機能を保持することができ るが、大規模な塑性変形を許容しているため、発震後 数年以内程度の期間で同部位の健全度調査や必要に応 じて部分的更新を行うことを前提とした製品である。

4. 断層用鋼管の開発

(1) 基本原理

図―1に示すように逆断層を横断して布設された 鋼管路に断層変位を与えると、断層の滑り面前後で鋼 管に座屈が生ずる。座屈の発生位置は断層変位によっ て鋼管路に作用する曲げモーメントが最大となる位置 近傍と想定されるが、前述のように鋼管の微小な初期 不整形状に影響を受けるため、その位置の特定は難し い。また、座屈発生後の変形の進展状況によって亀裂・ 漏水発生限界値は大きなばらつきを持って変動するこ とが予想される。そこで、図―4のように直管に予 め初期変形を与えておき,座屈変形が生じ易い(曲げ 変形が集中する)箇所を設けることで、変形の発生位 置ならびに変形の進展モードを制御し、大規模な強制 変位に対しても、亀裂・漏水の発生を抑制して通水機 能を確保できる鋼管の構造を考えた。この形状として は、薄肉円筒の軸圧縮の際に派生する座屈波形を基に 以下のように設定した。

$${\bf \xi} {\bf \check{z}} : L = n \cdot L_w \tag{1}$$

高さ:
$$H = m \cdot t$$
 (2)

ただし, *L_w* は (3) 式で与えられる Timoshenko⁹⁾ の座屈半波長の理論式, *n*, *m* は整数, *r* は管中心半径, *t* は管厚をそれぞれ示す。

$$L_w = 1.72\sqrt{r \cdot t} \tag{3}$$

(2) 最適形状の選定

図―4に示す座屈波形を有する鋼管(ϕ 600×6t) について、吸収可能な曲げ角度が最大となる最適形状 を、FEM モデルを用いたパラメトリックスタディに より求めた。解析パラメータとしては、波形の長さ*L* ならびに高さ*H*を選定した。波形部は管の曲げ変形 の進展に従い、山部が成長して管の内壁同士が接触す る状態を呈するが、本研究ではこの状態の管の曲げ角 度を「内面接触角度」と称し、断層用鋼管の設計上の 許容曲げ角度として規定した。

図—5にその結果を示す。長さ*L*については*L* = 225 mm (3.0 L_w)のケースで内面接触角度が最大となることがわかる。また、高さ*H*については、大きくする程内面接触角度が大きくなる傾向がうかがえるが、*H* = 24 mm (4t)以上では横ばいとなるため、*L* = 3.0 L_w および*H* = 4tを最適形状として選定した。

(3) 実管による性能試験

FEM 解析によって得られた最適な波形形状の性能 を確認するため、3 MN 構造物試験機を用いて図—6 に示す実管の曲げ試験を実施した。実験では亀裂発生 の有無を確認するため、管内に内圧 0.1 MPa を作用さ せた状態で、試験機のストローク限界まで曲げを与え た。

図-6 実管の曲げ試験装置

図-7ならびに図-8には試験中の供試管外観を 示すが,前者は内面接触角度まで曲げを与えた状態, 後者は試験機ストローク限界(曲げ角度30°以上)の 状態をそれぞれ示す。図-7の状態では,曲げ変形

図--7 曲げ試験状況(内面接触角度)

図-8 曲げ試験状況(ストローク最大)

は剛性の小さい波形部に集中しており,左右対称の山 が形成されていることが確認できる。さらに曲げ角度 を大きくしていくと,波形部に形成された山が横方向 に倒れ込む挙動を示すが,図-8の状態に至っても 亀裂発生は確認されなかった。したがって,断層用鋼 管の設計上の許容曲げ角度として規定した内面接触角 度と亀裂発生限界曲げ角度の間には十分な余裕がある ものと考えられる。

図-9には、直管ならびに断層用鋼管の曲げ試験 結果(荷重-変位曲線)をFEM解析結果と併せて表 示している。断層用鋼管の最大荷重は直管の座屈開始 荷重の60%程度であり、波形部が選択的に変形して いる様子がうかがえる。さらに、断層用鋼管では曲げ

角度の増大に伴って荷重は徐々に低減していくが,内 面接触角度を境に反力が回復する。図中に示す FEM 解析の結果(破線)は,内面接触角度を実験値に比較 して若干小さく評価しているものの,概ね実験値を再 現できているものと考える。

5. 断層用鋼管の検討事例

(1) 配管設計法

断層用鋼管の計画・設計に際しては,布設される断 層毎に異なる想定変位量,断層傾斜角度,埋設位置, 地盤条件等に合わせて最適な配管方法を決定する必要 がある。口径・管厚については,当該路線における水 理的条件ならびに埋設条件から,一般の埋設管路と同 様に決定されるが,断層用鋼管の山数ならびにその配 置方法は,断層の条件によって決定される。

ここでは, 図― 10 に示す逆断層の横断を想定した 断層用鋼管の設計フローについて紹介する。

(2) 設置間隔の検討

図―10に示すように、断層面を横断する直管路に 対し、断層面の滑りに伴う強制変位が作用した場合を 想定する。すると、図―11のように断層面を中心に管 路に曲げが生じ、変位の進行に伴って図中の○印の位 置における曲げモーメントが全塑性モーメントに到達 して塑性ヒンジが形成される。そこで、効率良く断層 変位を吸収するために、曲げモーメントが最大となる 塑性ヒンジ位置に断層用鋼管を配置するよう計画する。

(3) 山数の検討

次に断層パラメータとして与えられた断層変位量な らびに上記で設定した塑性ヒンジ間距離より,断層用 鋼管1本当たりの所要曲げ角度を(4)式より計算す る(図—12)。断層用鋼管の1山当たりの許容曲げ角 度は口径と管厚の関係によっても異なるが,概ね12° 程度であることから,これに基づいて断層用鋼管の山 数を設定する。断層用鋼管の山数は,1~3山を標準 としており,それぞれⅠ型~Ⅲ型と呼んでいる。

$$\theta = \tan\left(\frac{D_z}{D_y}\right) \tag{4}$$

ここに*θ* :曲げ角度 (°)

 D_y : 塑性ヒンジ間距離 (m)

D_z:鉛直断層変位量(m)

(4) FEM 解析による安全性照査

上記で設定した設置間隔ならびに山数を有する断層 用鋼管の耐震安全性照査は,FEMモデルを用いた解 析によって行う。図一13は、その一例を示したもの であるが、曲げ変形は波形部に集中しており、かつ曲 げ角度が内面接触角度に至っていないことから、山数 ならびに波形部の配置間隔について妥当であると判断 できる。

6. おわりに

以上,水道向けに開発した断層用鋼管の概要ならび に実管試験に基づく曲げ性能の確認,検討事例につい て紹介した。 断層用鋼管は,鋼管の弾塑性変形性能を十分に活用 することで,極めて大きな断層変位にも追従し,震災 時における水道ライフラインの供給継続を確保しよう とするものであるが,本開発によってこれまで積極的 な耐震対策を講ずることができなかった断層横断部に 対しても,具体的な耐震対策が検討できる環境が整備 されたものと考える。

断層用鋼管については,現在日本水道鋼管協会 (WSP)において規格化作業が進められており,今年 度中にはWSP規格として制定・発刊される見通しで ある。また,2011年東北地方太平洋沖地震においては, 可撓管の脱管による漏水被害が多数報告¹⁰⁾されてい るが,断層用鋼管は,脱管のおそれが無い耐震性可撓 管としての利用可能性もあることから,現在適用拡大 に向けた検討を進めているところである。

本開発が現在全国的に進められている水道耐震化の 一助となれば幸甚である。

JCMA

《参考文献》

- 1) 日本水道協会:水道施設耐震工法指針·解説 1997 年版,日本水道協会, 1997.
- ISO : ISO 2394 General principles on reliability for structures, 3rd edition, 1998.
- EUROCODE : EUROCODE 0 Basis for structural design, EN 1990 Eurocode 0 basis, 1990.
- 4)日本水道協会:水道施設耐震工法指針·解説 2009年版,日本水道協会, 2009.
- http://outreach.eri.u-tokyo.ac.jp/eqvolc/201103_tohoku/ fukushimahamadoori/, 2012.
- 6) 長谷川延広、今井俊雄、鈴木信久、Development of High Seismic Performance Pipe for Crossing Active Faults. 第6回日米台耐震ワー クショップ, 2009.
- 7)長谷川延広、今井俊雄、長嶺浩、中島良和、座屈波形を利用した断層 用鋼管の開発。日本工業用水協会第46回研究発表会、2011.
- 8)活断層研究会編,新編日本の活断層一分布図と資料一,東京大学出版 会,1991.
- 9) Timoshenko, 座屈理論, コロナ社, 1954.

[筆者紹介]

10) 鍬田泰子ら、土木学会東日本大震災被害調査団緊急地震被害調査報告 書,2011.

長谷川 延広(はせがわ のぶひろ) JFE エンジニアリング(株) アクア事業部 水道管路技術部 管路技術室 副課長

今井 俊雄(いまい としお)
JFE エンジニアリング(株)
アクア事業部
水道管路技術部長