特集≫≫ 建設施工の地球温暖化対策,環境対策

スクラビング・フローテーションを用いた土壌洗浄法による 放射性物質汚染土壌の効率的な浄化と減容化

毛利光男

福島県内の校庭と運動場の表層土壌を用いて、スクラビング・フローテーションを強化した土壌洗浄法 による浄化と減容化に関する実験的な検討を行った。放射性 Cs は、砂〜細砂分よりも土壌粒子径が小さ く比表面積が大きな粘土・シルト分に偏在していた。分級処理(2段湿式フルイ+サイクロン)のみによ る除去率は試料によってバラツキが大きく 66 ~ 87% であった。分級処理に加えて化学的な洗浄処理(ス クラビング・フローテーション)を行った場合の除去率は試料間のバラツキが小さく 90 ~ 96% であった。 放射性物質汚染土壌についてもスクラビング・フローテーションを行うことで安定して 90%以上の高い 除去率が得られることが確認された。

キーワード:放射性物質汚染土壌,放射性セシウム(Cs),土壌洗浄,スクラビング・フローテーション, 減容化,浄化

1. はじめに

2011年3月11日に発生した東北地方太平洋沖地震 とそれに引き続いて発生した津波により,福島第一原 子力発電所が大きな損傷を受け,大量の放射性物質が 環境中に放出された。現在,環境放射能のほとんどを 占めているのは,放射性Cs(¹³⁴Cs,¹³⁷Cs)である。 原子力発電所から放出された放射性Csはエアロゾル などの形で広域に移流拡散し,降雨に溶けてイオンの 形で降り注いだものと考えられている。降雨に伴って 地上に降下した放射性Csは,市街地や農耕地の土壌 と草木類,道路舗装面,森林・緑地の樹木の葉や樹皮, 地表の落葉や腐葉土など雨に接触する媒体へ吸着・蓄 積された。

環境省は,除染とは環境中にある放射性物質による 被曝量を低減させる方法である「取り除く」,「遮蔽す る」,及び「遠ざける」を組み合わせて対策を行うこ とであると定義し,除染によって人への追加被曝線量 を年間1mSv以下にすることを長期的目標としてい る。広範囲な地域で放射性Csを含む表層土壌,側溝 の汚泥,草木類や落葉を取り除くため,膨大な量の汚 染土壌と廃棄物(環境省の試算によると福島県内で 2800万m³)が集積することが予想される。除染によっ て発生する汚染土壌等は,各市町村の仮置き場で3年 間保管された後,中間貯蔵施設へ搬出され,そこで 30年間保管される。膨大な汚染土壌等を保管する中 間貯蔵施設の建設には、広大な施設用地と莫大な建設 費用が必要となる。このため、膨大な量の汚染土壌等 を効率的に減容化する技術が強く望まれている。筆者 は重金属類や鉱物油による汚染土壌を対象としたオン サイト型土壌洗浄プラント(処理実績:累積 240 万 ton)の技術開発に従事してきたが、今まで培ってき た洗浄技術は放射性物質汚染土壌に対しても十分に適 用可能であると考えている。

本稿では、放射性物質汚染土壌の効率的な浄化と減 容化を目的として、福島県内の校庭と運動場の表層土 壌を用いて、スクラビング・フローテーションを強化 した土壌洗浄法の事前適用性試験を行った結果につい て報告する。実験に先立って、土壌における放射性 Csの保持機構に関する文献を基に、土壌中の放射性 Csの存在形態に関する考察を行った。これより、放 射性 Cs 汚染土壌に対してはスクラビング・フローテー ションを強化することが効果的であると考えた。事前 適用性試験では最初にロードカーブ試験を行い、土壌 粒子径と含有放射能量の関係を調べた。次にスクラビ ングと超音波による土壌粒子の表面摩耗による含有放 射能量の低減効果を調べた。この基礎的な知見を基に 一連の土壌洗浄試験を実施し、スクラビング・フロー テーションを用いた洗浄法が放射性物質汚染土壌の効 率的な浄化と減容化にどのように寄与しているのかに ついて評価を行った。

2. 土壌における放射性 Cs の保持機構,存 在形態

土壌中では粘土鉱物や有機物の表面が負に荷電して いるため, Cs⁺は, K⁺や Ca²⁺などの陽イオンと同様 に,この負電荷を中和する形で土壌表面に吸着する性 質を有する¹⁾。複数の文献^{2)~10)}より考察された土壌 における放射性 Cs の保持機構を図―1(A) に、放 射性 Cs 吸着粒子の存在形態を図―1(B)に示す。

塚田ら⁵⁾は、土壌中の¹³⁷Cs をイオン交換画分、有 機物結合画分,強固な結合画分(抽出残渣)に分類し た。土壌中の¹³⁷Cs は, K⁺, NH₄⁺等の陽イオンと置 き換わることができるイオン交換態が全体の10%. 有機物結合態が20%、粘土鉱物等との強固な結合態 が70%であると報告している。

2:1型の粘土鉱物である雲母類による放射性 Cs の特 異吸着に関しては、多数の研究が行われてきた^{2)~10)}。

(A) 土壌における放射性 Cs の保持機構

 \bigcirc

Core

00000

00000↔

(a) 2:1 型層状珪酸塩鉱物

 \bigcirc : K, \bigcirc : Cs, \bigcirc : hyd. sphere

Frayed edge

Ó

(b) 鉄水和酸化物

放射性 Cs は雲母類の風化によって部分的に膨潤した 末端部 (frayed edge) の層荷電に特異的かつ非可逆 的に吸着されること、土壌中の雲母類の含有量が少量 (1~2%)であっても大量の放射性 Cs を強く吸着で きることがよく知られている⁷⁾。このため、強く吸着 された放射性 Cs は、雨が降っても土壌表層に止まっ て下方へ移動しない。

雲母類以外での放射性 Cs の土壌への吸着は、粘土 鉱物による陽イオン交換、水和酸化鉄や腐植質などへ の吸着等によって起きると考えられている。水和酸化 鉄は、雲母類と異なり、Csを固定ではなく吸着する⁷⁾。 Csの腐植質への吸着は一般的に弱い⁷⁾。

3. 土壌洗浄の処理フローとスクラビング・ フローテーションの概要

土壌洗浄法は重金属類、鉱物油などの汚染物質の多

(B) 土壌中の放射性 Cs 吸着粒子の存在形態

:粘土鉱物 (2:1型層状珪酸塩鉱物) : 右機物(腐植質など)):非晶質の鉄水和酸化物

図一1 土壌における放射性 Cs の保持機構と土壌中の放射性 Cs 吸着粒子の存在形態

図-2 土壌洗浄と事前適用性試験の概要

図一3 ハイドロサイクロン, スクラビング・フローテーション(スクラバー+フローテーション)の概要

くが砂~粗砂分よりも細粒子分(粘土,シルト)に付 着しやすいという性質を利用して,土壌から汚染物質 を含有する細粒子分を分離、除去することによって土 壌を浄化する技術である。放射性物質汚染土壌の場合 も同様である。図―2(a)に示した土壌洗浄法は鉱 山技術と化学工学を基にしたものであり, 主に2段湿 式フルイとサイクロンによる分級プロセスと、スクラ バーとフローテーションによる化学的な洗浄プロセス から構成されている。汚染土壌は、湿式フルイによっ て2mm以上の礫・粗砂を取り除いた後、サイクロン (図-3 (a)) によってオーバーフロー (細粒子分, 概ね63µm以下)とアンダーフロー(砂・細砂分, 概ね63µm~2mm) に分離される。アンダーフロー (砂・細砂分)は、スクラバー(図-3 (b))におい て複数の薬剤により表面処理された後、スクラビング (表面摩耗)によって土壌粒子表面から汚染粒子が効 果的に剥離される。続くフローテーション(図-3(c)) において土壌中の汚染物質は、清浄な土壌粒子との表 面性状の違いを利用して洗浄・分離される。フローテー ションによって洗浄された砂・細砂分は、脱水機を経 て再利用が可能な洗浄土となる。汚染物質が濃縮され ている濃縮汚染土は脱水ケーキとして処分場(放射性 物質汚染土壌の場合は中間貯蔵施設での保管後に最終 処分施設)へ搬出される。

4. ロードカーブ試験,表面摩耗試験

放射性物質汚染土壌の基礎的な知見を得るために, ロードカーブ試験とスクラビング・超音波による表面 磨耗試験を行った。

(1) ロードカーブ試験

ロードカーブ試験とは、ステンレス製の金網篩いを 用いて土壌試料を湿式で分級し、土壌粒子径と汚染物 質の含有量(乾燥土)の関係を求める試験のことであ る。福島県内の校庭土壌に対してロードカーブ試験を 行い、土壌粒子径と放射性 Cs 含有量(乾燥土の¹³⁴Cs +¹³⁷Cs)の関係を調べた。元土の放射性 Cs 含有量が 低濃度(7610~11350 Bq/kg)である2試料のロード カーブを図-4(a)に、中~高濃度(41700~70620 Bq/kg)である4試料のロードカーブを図-4(b) に示す。どの土壌試料についても放射性 Cs は、砂~

(a) 低濃度土壌(7610~11350Bq/kg)

(b) 中~高濃度土壌(41700~70620Bq/kg)

図-4 校庭土壌試料の含有放射能量のロードカーブ

細砂分よりも土壌粒子径が小さく比表面積が大きな細 粒子分(粘土・シルト)に偏在していることが認めら れた。前述したように,放射性 Cs の保持に寄与する のは, 雲母類,粘土鉱物,水和酸化鉄,腐植質などで あり,これらは粘土・シルト分に多く含まれている。 既往の知見と今回のロードカーブ試験の結果とは良く 合致していると考えられる。

以上より,土壌洗浄の有効性,すなわち放射性 Cs 量の大部分を含有する粘土・シルト分を効率的に分離・ 除去することによって汚染土壌の含有放射能量を大幅 に低減できることが示唆された。

(2) スクラビング・超音波による表面摩耗試験

図一1 (b) からは、土壌粒子表面に付着している 放射性Cs吸着粒子を土壌粒子表面から剥離させると、 土壌粒子の含有放射能量が大幅に低減することが期待 される。この効果を把握するため、薬剤を用いないで スクラビングと超音波を用いて土壌粒子表面を摩耗 し、粒子表面から放射性Cs吸着粒子を物理的に剥離 する試験を行った。スクラビングでは、図一5 (a) に示すように土壌粒子を互いに衝突させることによっ て粒子表面を擦り合わせ、土壌粒子表面の摩耗、研磨 を行った。超音波では、図一5 (b) に示すように超 音波のキャビテーション(空洞現象, 超音波振動によっ て発生する小さな気泡(空洞)が潰れる時に強力な衝 撃波を発生)によって土壌粒子表面の摩耗を行った。 今回は湿式振動フルイ機を用いて、校庭土壌試料を $250 \mu m \sim 2 mm$ の粒子分に篩い分けた。スクラビン グ試験では、スクラバー試験機を用いて $250 \mu m \sim 2 mm$ の粒子分 500 gr-dryに水 330 mLを加えたセル 内の試料に対して $1400 rpm \times 10$ 分間のスクラビン グ(表面摩耗)を行った。超音波試験では、超音波発 信機を用いて $250 \mu m \sim 2 mm$ の粒子分 100 gr-dry と 水 1000 mLを入れた 1L ガラス瓶に対して 40 kHzの 超音波を 100分間照射した。

摩耗粒子発生率の定義,および摩耗粒子発生率と摩 耗前後の粒子径との関係を図―6に示す。この関係 式では、土壌粒子が球形であること、表面摩耗が均等 に行われることを仮定している。スクラビング・超音 波を用いた土壌粒子の表面摩耗(薬剤は無添加)によ る放射性Csの低減効果を図―7(a)に示す。表面摩 耗前後の土壌粒子径の比率と含有放射能量低減率の関 係を図―7(b)に示す。図―7(a)より,粒子量の5% を摩耗すると含有放射能量低減率は約45%,10%を 摩耗すると低減率は約70%であった。また、粒子量 の15%以上を摩耗しても含有放射能量低減率は80%

(a) スクラビング

反対向きの螺旋状の上下の 攪拌翼が土壌粒子にそれぞ れ逆向きの力を与えること によって,土壌粒子は互い に衝突する。この衝突によ って,強固なスクラビング, すなわち粒子表面の研磨と 粉末化が起こる。 (b) 超音波(Cavitation,空洞現象)

図-5 スクラビング,超音波による表面磨耗

$$RAL = \frac{V_0 - V}{V_0} = \frac{4/3\pi (r_0^3 - r^3)}{4/3\pi r_0^3}$$
$$= 1 - \left(\frac{r}{r_0}\right)^3$$
$$\therefore \quad \frac{r}{r_0} = \sqrt[3]{1 - RAL}$$

 摩耗粒子発生率:Rate of Abrasion Loss (RAL)

 摩耗前の粒子径:r₀
 摩耗前の粒子体積: V₀

 摩耗後の粒子径:r,
 摩耗後の粒子体積: V

図-6 摩耗粒子発生率と摩耗前後の粒子径の関係

図-7 表面摩耗による放射性 Cs の低減効果

で止まった。図一7(b)より,粒子量の5%の摩耗 は粒子径が元の98%に,10%の摩耗は粒子径が元の 96.5%になることに相当する。これは,直径500µm の粒子の場合には表面の5µm~8.8µm厚が削り取 られるということを意味する。

以上より、土壌粒子表面を物理的(薬剤は無添加) に摩耗し、粒子表面から放射性 Cs 吸着粒子を剥離さ せることは、放射性 Cs の低減に効果的であることが 認められた。一方、物理的な表面摩耗のみで放射性 Cs を大幅に低減させる場合には、多量の摩耗粒子が 発生するという問題があることもわかった。このため、 図-3 (b) に示したように、薬剤による土壌粒子の 表面処理後にスクラビングを行うことで、土壌粒子表 面に付着している放射性 Cs 吸着粒子を効果的に剥離 し、かつ摩耗粒子の発生量を抑制することが合理的で あると考えた。

以下の土壌洗浄試験におけるスクラビング・フロー テーションは、全て薬剤を添加して実験した。

5. 事前適用性試験

今回は4 試料(小学校校庭土壤×3 試料,運動場土 壌×1 試料)の事前適用性試験を行った。事前適用性 試験のフローを図-2(b)に示す。土壌洗浄試験は, 主要プロセスである2段湿式フルイ,サイクロン,ス クラビング・フローテーションのミニプラント試験機 を用いて行った。本試験では、スクラビング・フロー テーションを強化した土壌洗浄法の浄化と減容化の特 性を実験的に把握することを目的とした。サイクロン のオーバーフローを主体とする洗浄排水を循環再利用 するためには、良質な処理水を得る必要がある。この ため、凝集沈殿試験を行い処理水の放射性 Cs 濃度の 検討を行った。

(1) 粒度分布試験

4 試料の粒度分布試験の結果を図-8に示す。4 試 料の 63 μ m 以下の細粒子分の割合は 18 ~ 26%, 63 μ m ~ 2 mm の砂分の割合は 57 ~ 71%, 及び 2 ~ 4 mm の粗粒子分の割合は 9 ~ 23%であった。これら の 4 試料は, 63 μ m 以下の細粒子分の割合が小さい ため, 土壌洗浄に適した粒度構成であると判断された。

(2) 土壤洗浄試験

4 試料の洗浄試験の結果を表―1に示す。表―1に は、分級処理(2 段湿式フルイ+サイクロン)のみの 場合と分級処理に続いて洗浄処理(スクラビング・フ ローテーション)を行った場合の浄化効果と減容率を 比較するために、それぞれの場合の含有放射能量、除 去率、及び減容率を示した。除去率は、元土(Feed) の含有放射能量に対する除去された含有放射能量の割 合を示している。減容率は、元土(Feed,乾燥重量) に対する洗浄土(乾燥重量)の割合を示している。

図-9に分級処理のみの場合と分級処理に続けて 洗浄処理を行った場合の含有放射能量の除去率を示 す。分級処理のみによる除去率は試料によってバラツ キが大きく Site-A 試料で76%, Site-B 試料で77%,

試料名		分級処理 (2 段湿式フルイ + サイクロン)			洗浄処理 (スクラビング・フローテーション)			凝集沈殿処理		授助相記
		¹³⁴ Cs + ¹³⁷ Cs (Bq/kg)	除去率 (%)	減容率 (%)	¹³⁴ Cs + ¹³⁷ Cs (Bq/kg)	除去率 (%)	減容率 (%)	¹³⁴ Cs + ¹³⁷ Cs (Bq/kg)	рН (-)] 1不4又场州
Site-A	7200	1710	76%	81%	750	90%	77%	< 10	7.5	小学校
Site-B	40900	9520	77%	78%	3290	92%	74%	< 10	7.6	小学校
Site-C	46300	15730	66%	83%	4330	91%	80%	< 10	7.8	小学校
Site-D (1)	21000	2700	87%	84%	1960	91%	81%	< 10	7.8	運動場
Site-D (2)	11	11	11	11	740	96%	73%		-	"

表-1 放射性物質汚染土壌の土壌洗浄試験の結果

※ Site-D (2) のスクラビング・フローテーションは、Site-D (1) よりもフロスの発生量が大きくなる条件で行った。

Site-C 試料で 66%, Site-D 試料で 87%であった。分 級処理に加えて洗浄処理を行った場合の除去率は試料 間のバラツキが小さく4 試料とも 90 ~ 92%であった。 Site-A ~ Site-C の土壌試料については化学的な洗浄 処理を追加することによって,含有放射能量除去率は 66 ~ 77%から 90 ~ 92%へと 14 ~ 25%も大幅に改善 された。一方,Site-D の土壌試料については通常の洗 浄処理を追加しても,除去率は 87%から 91%へと 4% しか改善されなかった。Site-D の土壌試料については, フロス発生量が大きくなる条件での洗浄処理を別途 行ったところ,除去率は 87%から 9%向上し 96%と なった。

以上より,放射性物質汚染土壌についても分級処理 だけではなく,スクラビング・フローテーションを行 うことで安定して 90%以上の高い除去率が得られる ことが確認された。

図―10に含有放射能量除去率と減容率との関係を 示す。分級処理(2段湿式フルイ+サイクロン)のみ よりも洗浄処理(スクラビング・フローテーション) を追加することによって除去率が大幅に向上する反 面,減容率が多少低下することが認められた。今回の 4 試料については,分級処理のみの減容率は78~

84%であり,分級処理+洗浄処理の減容率は73~ 81%であった。薬剤を用いない物理的な表面摩耗 (4.(2)を参照)に比べて,洗浄薬剤を使用するスク ラビング・フローテーションでは,濃縮汚染土となる 摩耗粒子の発生量が少ないこと,すなわち減容率の低 下が僅かであることが認められた。

さらに減容化を進めるためには、スクラビングに よって発生する剥離粒子や摩耗粒子の中から、放射性 Cs吸着粒子を選択的に分離する「フローテーション の選択性」を一段と強化する必要がある。フローテー ションの選択性が良好な場合には、放射性 Cs の高い 除去率と高い減容率の両方を満足させることが可能と なる。この検討結果については、別途報告する予定で ある。

フローテーション試験の一例を写真―1に示す。写 真表面に見えるのはフロス(汚染粒子を表面に付着し た気泡)であり、このフロスには放射性 Cs が高濃度 で含まれていた。フロス付着物を X 線回折(XRD) で分析したところ、放射性 Cs を強く吸着することが 知られている金雲母(phlogopite)が多く含まれ、他 に蛭石(vermiculite)、石英(quartz)、カオリナイ ト(kaolinite)、インド石(indialite)などが含まれて

写真―1 フローテーション試験の状況

いた。約6%含まれている鉄(Fe)は非晶質の化合物 形態で含まれていると考えられた。

(3) 凝集沈殿試験

サイクロンのオーバーフローの凝集沈殿試験を行っ たところ, 無色透明の清澄感のある処理水が得られた。 凝集剤には, 無機凝集剤(PAC, 硫酸バンド)と高 分子凝集剤(ノニオン系, アニオン系)の両方を用い た。表一1に示すように, 4 試料とも処理水の放射性 Cs 濃度は定量下限値未満(<10 Bq/kg)であった。 凝集沈殿試験から, 放射性物質汚染土壌の洗浄処理に おいて土壌中の放射性 Cs が水にほとんど溶出しない こと, および処理水の循環再利用が十分可能であるこ とが確認された。

6. おわりに

今回の一連の実験的検討より,土壌洗浄によって放 射性物質汚染土壌の浄化・減容化が効率的に行えるこ と,単なる分級処理だけではなく,スクラビング・フ ローテーションを行うことで安定して 90%以上の高 い含有放射能量除去率が得られることが判明した。

今後は,放射性物質汚染土壌の洗浄処理の取り組み を推進し,放射性物質汚染土壌の浄化・減容化に貢献 する所存である。

JCMA

《参 考 文 献》

- (社日本土壌肥料学会:土壌・農作物等への原発事故影響 WG, セシウム (Cs)の土壌でのふるまいと農作物への移行, http://jssspn.jp/info/nuclear/cs.html, pp.1-2.
- 2) Bostick, B. C., Vairavamurthy, M. A., Karthikeyan, K. G., and Chorover, J. : Cesium adsorption on clay minerals: An EXAFS Spectroscopic investigation, *Environmental Science & Technology*, Vol.36, No.12, pp.2670-2676, 2002.
- Sawhney, B. L. : Selective sorption and fixation of cations by clay minerals: A review, *Clays and Clay Minerals*, Vol.20, pp.93-100, 1972.
- 4) 山口紀子ら:土壌一植物系における放射性セシウムの挙動とその変動 要因、農業環境技術研究所報告、Vol.31, pp.75-129, 2012.
- 5) Tsukada, H., Takeda, A., Hisamatsu, S., and Inaba, J. : Concentration and specific activity of fallout ¹³⁷Cs in extracted and particle-size fractions of cultivated soils, *Journal of Environmental Radioactivity*, Vol.99, No.6, pp.875-881, 2008.
- Schulz, R. K., Overstreet, R., Barshad, I. : On the Soil Chemistry of Cesium 137, *Soil Science*, Vol.89, Issue 1,pp.16-27, 1960.
- 7) US EPA : Understanding variation in partition coefficient, Kd, values, Volume II : Review of geochemistry and available Kd values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (³H), and Uranium, EPA 402-R-99-004B, pp.2.1-2.3, pp.5.16-5.21, pp.D.9-D.19, 1999.
- Cornell, R. M. : Adsorption of cesium on minerals: a review, *Journal of Radioanalytical and Nuclear Chemistry*, Vol.171, No.2, pp.483-500, 1993.
- Rosso, K. M., Rustad, J. R., and Bylaska, E. J.: The Cs/K Exchange in Muscovite interlayers, An ab initio treatment, *Clays and Clay Minerals*, Vol.49, No.6, pp.500-513, 2001.
- Jackson, M. L.: Interlayering of Expansible Layer Silicates in Soils by Chemical Weathering, *Clays and Clay Minerals*, Vol.11, pp.29-46, 1962.

[筆者紹介]
 毛利 光男(もうり みつお)
 清水建設(株)
 エンジニアリング事業本部 土壌環境事業部
 主査

この報文は「平成 24 年度 建設施工と建設機械シンポジウム」において, 論文賞を授与されました(JCMA 報告…p.84 参照)が, 原文とは一部異なる表現をしてあります。