特集≫ 地球温暖化対策,環境対策·環境対策工 ┃

高効率型の地中熱利用システム 分岐管方式の地中熱交換器

三小田 憲 司

大地に掘削孔を設けて、その中に採熱管を挿入し、地中の熱エネルギーを利用するのが、地中熱利用システムである。採熱方法として、U字管が多用されているが、送り側と還り側の配管の距離が近いため、ショートサーキットが生じて採熱効率が低下することが課題であった。そこで、送り管3本と還り管1本で構成し、ストッパーで間隔を離して固定した分岐管方式の地中熱交換器を開発し、シミュレーション解析により採熱効率が20%高いことを確認した。また、高速掘削機や高速建込装置を開発し、当社技術研究所の実験施設OL2の施工を通して、工期短縮により施工費を25%低減できることを検証したので、ここに紹介する。

キーワード:地中熱,省エネルギー,CO2削減,杭,分岐管

1. はじめに

「地中熱」が再生可能エネルギー源として法律に規 定され、2010年には「エネルギー基本計画」において、 利用促進を図ることも明記され、国内でも地中熱利用 システムの実施件数は増加傾向にあるが、普及の進ん だ欧米諸国とは普及度にかなりの開きがある。その理 由として,国策による支援制度の違い,認知度の不足, 設計者や技術者の育成の遅れなども指摘されている が、設置費用が諸外国と比べて高いことも、大きな要 因である。国内における地中熱利用の普及促進を図る 上で、設置費用の削減により、経済性向上を図る技術 を開発することは非常に重要である。また、経済性向 上を図る手段として, 効率的な採熱方法により, 地中 からの採熱効率を向上させることも効果的である。本 報では、当社で開発を進めてきた地中熱利用に関する 低コスト施工技術と高効率の分岐管方式地中熱交換器 について紹介する。

2. 分岐管方式地中熱交換器の概要

従来の地中熱交換器としては、先端が U 字状に熱融着された U チューブが用いられてきた(写真—1)。しかし、従来方式は送り管と還り管が密着しているため、還り管内を流体が通過する時に、送り管からの熱干渉が生じ、採熱効率の低下を招いてしまうことが課題であった。当社が開発した分岐管方式は、還り管1

本に対して、送り管が多本数で構成している(**写真**—2)。ここで、送り管の本数は、掘削孔径により2本ないし3本を想定している。更に専用ストッパーをは

写真-1 従来方式の U チューブ方式の外観

写真-2 分岐管方式の外観

め込むことによって、配管のねじりを防ぎつつ、配管 間隔を離して固定する。配管間隔が従来方式より離れ ているため、ショートサーキットによる熱損失が抑制 されるので、採熱効率の向上が期待できる。また、送 り管の本数を多くすることでも、採熱能力の向上が期 待できる。本方式は伝熱の工夫により高効率化を図っ たものであり、高価な材料は使用しないので、高効率 化の代償としてコスト上昇を招かないことが特徴であ る。

分岐管方式の地中熱交換器は、採熱管、管底先端部、EFソケットで構成される高密度ポリエチレンの一体構造である(写真—3)。採熱管と管底先端部は、EFソケットを介して、電気融着により現場施工で接合する。EFソケットには、融着に必要な時間や温度の情報のついたバーコードがあり、EFコントローラーで読み取って融着処理を行う(写真—4)。融着作業に熟練技術は必要ないので、誰でも簡単に実施できる。管底先端部は内部が中空で、上部に配管接続口を備えており、掘削孔挿入時の抵抗を少なくするため凹形状としている。専用ストッパーは、数多くの既製品を調査収集したが利用できるものがなく、試設計を経て多数の試作品を製作し、作業性、保持性、安全性につい

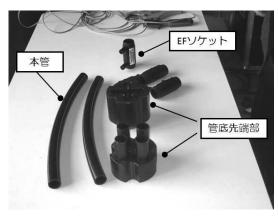


写真-3 分岐管方式の構成

写真― 4 EF コントローラーによる電気融着

て検証した上で完成させた。ストッパーの中心部は、支持部材がない中空状としているため、掘削孔への配管挿入後に行う砂充填作業において、充填砂とストッパーのあいだに空隙ができる心配がない構造となっている(写真—5)。専用ストッパーの使用により、 ϕ 165 mm の掘削に内径 20.4 mm の配管を用いた分岐管方式の地中熱交換器において、管離隔距離を 71 mm とることが可能となった。従来方式のダブル U チューブでは 10 mm 程度なので、採熱時の熱損失は大きく改善できる(図— 1)。

写真-5 専用ストッパーの装着状況

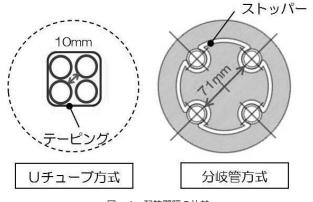


図-1 配管間隔の比較

3. 地中熱交換器の施工技術開発

地中熱交換器の施工は、養生管設置、掘削、採熱管建て込み、ケーシング引き抜き、珪砂充填および水締めといった手順で行われる。地中熱交換器の施工に関して、省力化・工期短縮を図ることで工事費を削減することが可能である。当社では、以下の施工技術を導入・開発し、当社技術研究所の実験施設 OL2(東京都清瀬市)での施工を通して 25%の施工費削減効果を検証することができた。

・口元養生塩ビ管の使用

- ・高性能改造型ロータリーバカッション掘削機の採 田
- ・高速建込み装置の開発等,建て込み工法について の省力化
- ・搬入時の配管巻き径のコンパクト化(約60%)による作業性の改善

地表面付近の口元養生について、従来の施工法としてはセメンティングなどが行われているが、塩ビ管を口元養生管として埋め殺しで用いることで、上部の崩壊防止と掘削後の養生を行った。セメンテーション作業と養生ケーシングの引き抜き作業を省くことにより、省力化することができた(図—2)。掘削については、回転トルクを改造した、高回転仕様のロータリーバカッション掘削機を採用した(写真—6)。粘土混じり礫層主体の地層に対して、摩擦抵抗を低減してフ

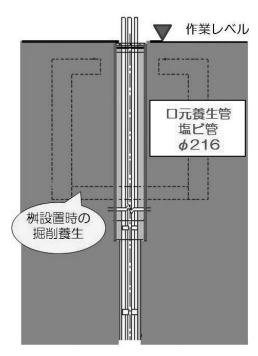
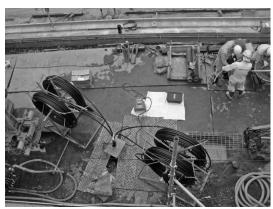



図-2 口元養生管の設置概要

写直—6 高速掘削機

ラッシングの回数を減らすことができ、当社技術研究 所の実験施設 OL2 の施工において、従来の掘削機よ りも掘削速度が25%向上することを確認し、ロッド 埋設等のトラブルの危険性を低減できた。配管の建て 込みについては、配管4本の同時建込み作業が行える 高速建込装置を開発した。敷地に余裕のない都市部で の狭隘作業にも対応できるように、2台並列のコンパ クト型2連建込タイプにして、幅5mの狭隘作業が 実施できるようにした(写真一7)。さらに先端キャッ プも水圧による抵抗の小さい形状に改良し、ストッ パーのアタッチメント性についても改良を重ねた。従 来のUチューブ方式の施工では、浮力対策として先 端に数十kgの重りをつけて建て込み作業を行ってい るが、本方式では省略することが可能である。国内で は IIS 規格の地中熱パイプの市販品が多用されている が、分岐管方式では肉厚の薄い ISO 規格の配管を採 用している。従来方式の U チューブは、採熱管 2本 が先端で熱融着されており、ロール状にして工場から 搬入されるが、外径が1.8 m ある。本方式で用いる分 岐管は外径 1.2 m で、巻き径を 2/3 に小さくすること ができ、重量も軽いので、作業性を改善することがで きる。以上の工夫により、深さ75mの地中熱交換器 の施工について、掘削所要時間は4時間、配管建込み 所要時間は1時間で、短時間での施工が実現できた。 現在は、先端キャップは削り出し成型品として使用し ているため、材料費は従来工法よりも若干高くなって いるが、掘削機の改良や建て込み装置の効率化による 工期短縮効果により、現状でも25%の工費削減効果 が期待できることが分かった。市場の拡大や配管材料 の量産化を前提にすれば、2020年には45%以上安価 にできると試算している。

写真―7 高速配管建て込み装置

4. 信頼性の検証

従来空調システムを構成する設備機器の耐用年数は およそ15年であるが、地中に埋設した熱交換器の耐 用年数は50年以上と言われており、LCCを基準に評 価した場合には、地中熱利用システムの優位性は大き い。本方式が実用性に耐えうることを証明するため に、現場組み立て工法の施工性と、長期的な耐圧性・ 止水性について検証を行った。分岐管方式の地中熱交 換器は、EF ソケットを用いた電気融着施工が必要に なる。しかし、必要な作業は管表面の切削処理、アル コール清掃, バーコード読み取り, EF コントローラー の表示に従って行うソケットの着脱などで、未経験の 作業員であっても、作業開始に先立ち教育を行うこと で、作業上問題無く施工ができ、大きな熟練性を必要 としないことが、実施施工を通して分かり、施工性に ついて問題はまったくないと考えている。耐圧性につ いては、採熱管の長期的な止水性・耐圧性の保証を得 るために、設計内圧 1.0 MPa, 50 年後の安全率を 2 と して、日本水道協会の推奨する水道用ポリエチレン管 熱間クリープ試験¹⁾ を実施した(**写真─8**)。試験片 に水を充填し,所定の温度,圧力で試験を行った結果. 長期的な耐圧性能が検証された (表─1)。OL2 にお ける施工においても、全地中熱交換器を対象に、水圧 を 0.75 MPa に加圧後、直ちに 0.5 MPa に減圧する通 水試験²⁾ を実施し、1時間後の水圧が施工した熱交換 器の全数で 0.4 MPa 以上あり、耐圧基準を満足するこ

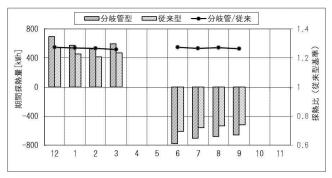
写真―8 クリープ試験の状況

表— 1	内圧クリ-	- プ試験結果

No.	試験条件			積算時間	試験結果
	温度	圧力	時間	(武駅和未
1	20℃	2.48 MPa	100 h 以上	110 h	異常なし
2	80℃	1.10 MPa	165 h 以上	959 h	異常なし
3	80℃	1.00 MPa	1,000 h 以上	1,153 h	異常なし

とを確認した(**写真** 9)。以上の耐圧性試験結果より、現場組立工法の分岐管地中熱交換器の信頼性を検証できた。

写真-9 現場通水試験の状況


5. 採熱効率に関する検証

分岐管方式と従来地中熱方式 (ダブル U チューブ 方式) の採熱能力について、配管サイズや杭深さを同 一条件として、年間シミュレーション解析により採熱 能力の比較評価を行った。解析モデルは、3次元の地 中熱伝導方程式や地中熱交換器の熱移動収支式等を組 み合わせた連立方程式モデルで、計算精度については 屋外実証実験との比較により確認済み 3) である。採熱 能力の比較方法については、地中熱交換器の送り温度 と循環流量を固定して、地中熱交換器の還り温度を計 算して採熱量を比較する感度解析法で実施した。地中 熱交換器は、ともに深さ70mとした。運転条件は、 事務所ビルでの運転を想定して、平日8時間の運転と した(表一2)。採熱量を計算した結果、年間を通し て分岐管方式の方が従来方式のダブル U チューブ方 式より採熱能力が高く, 年間採熱量は従来方式の 3.510 kWh に対して. 分岐管方式は4.380 kWh で

表―2 採熱能力の比較条件

仕 様	掘削深さ	70 m	
	管内径	分岐管:20.4 mm, Uチューブ:21 mm	
	熱媒	プロピレングリコール 30%	
物性値 外 界 条 件	地中温度	16.5℃	
	気象条件	東京都清瀬市実測値	
	土の熱伝導率	1.89 W/mK	
	土の容積比熱	$1,820 \text{ kJ/m}^3\text{K}$	
運転	夏期運転時間	6~9月平日 (9~17時)	
	冬期運転時間	12~3月平日 (9~17時)	
条	件	送り水温	冬期 7℃,夏期 27℃
		循環流量	24 L/min

25%高い結果が得られた。地中熱交換器の深さ1m当たりの採熱率に換算すると、ダブルU字管方式の41.9 W/mに対して、分岐管方式は53.2 W/mであり、標準的な条件を与えた上での試算例ではあるが、採熱率が20%以上高い結果が得られた(図一3)。

図一3 採熱能力のシミュレーション解析結果

6. おわりに

本年度には環境省や経産省で、地中熱を対象とした補助金制度の拡充が図られ、ここ数年のあいだに多くの自治体で、地中熱利用に関する協議会や研究会が立ち上げられるなど、地中熱利用システムの普及に向けた動きが広がりを見せている。地中熱利用システムの CO_2 削減効果は、比較する在来空調システムにもよるが $30\sim50\%$ の効果が期待され、空冷ヒートポンプのような室外機からの放熱もないので、ヒートアイランド現象の抑制手段としても普及が期待されている。建

設施工の世界は、これまで周囲から環境に対してマイナスのイメージで見られることが多かったが、地中熱利用システムは建設施工技術を活かして、社会に対して環境への貢献をアピールできることもあって、意欲的な業者も増えつつある。当社でも、地中熱利用システムについて、設計、施工、技術コンサルタントを一括して請け負う体制を構築しており、地中熱利用システムの普及に貢献していきたいと考えている。なお、本方式を採用した地中熱ヒートポンプの実績評価については、平成 25 \sim 26 年度環境省 $\rm CO_2$ 排出削減対策強化誘導型技術開発・実証事業「高効率型地中熱利用システムに関する実証研究」の一環として、実証施設で 2014 年夏からの運用評価を行っており、随時成果を報告して行く予定である。

J C M A

《参考文献》

- 社団法人日本水道協会: JWWA 規格 K 144, 水道配水用ポリエチレン管. 2009
- 2) 配水用ポリエチレンシステム協会: 水道配水用ポリエチレン管および 管継ぎ手施工マニュアル
- 3) 三小田, 土屋:分岐管方式地中熱交換器の採熱実験および性能予測, 平成 25 年度空気調和・衛生工学会学術講演論文集, 2013

[筆者紹介] 三小田 憲司(みこだ けんじ) ㈱大林組技術研究所 環境技術研究部 主任研究員