特集 ※ 最先端の高度な土木技術・建設技術の開発と実用化

水の凍結膨張圧を利用した 「コンクリート構造物破壊技術」

三輪明広·小椋 浩·植木和幸

昨今の都市部の建築工事では、ほとんどの場合、既存建物の解体工事を伴い、大規模な既存建物を解体 することも多く、とくに地下の解体では基礎梁、フーチング、造成杭などの大型鉄筋コンクリート部材を 解体する事例が増えてきている。このような大型基礎の解体は、大きな打撃音、振動、粉塵などが連続的 に発生するという問題点があり、工事現場周辺への環境負荷の小さい解体工法が求められている。

そこで今回,水の凍結膨張圧をコンクリート構造物に与え,一定間隔でひび割れを入れ,ブロック割り することを容易にする「コンクリート構造物破壊技術」を開発した。本報告では,本技術の原理と凍結破 壊実験について報告する。

キーワード:水、凍結膨張圧、コンクリート構造物、破壊

1. はじめに

昨今の都市部の建築工事では、ほとんどの場合、既 存建物の解体工事を伴い、大規模な既存建物を解体す ることも多く、とくに地下の解体では基礎梁、フーチ ング、造成杭などの大型鉄筋コンクリート部材を解体 する事例が増えてきている。このような大型基礎の解 体は、通常の圧砕機では爪幅が足りずに噛み砕くこと ができないため、一般的には大型ブレーカによる打撃 を繰り返すことで破壊する。しかし、ブレーカ工法は、 大きな打撃音、振動、粉塵などが連続的に発生すると いう問題点があり、工事現場周辺への環境負荷の小さ い解体工法が求められている。

そこで今回,水の凍結膨張圧をコンクリート構造物 に与え、一定間隔でひび割れを入れ、ブロック割りす ることを容易にする「コンクリート構造物破壊技術」 (以下,本技術)を開発した。コンクリートに一定間 隔で削孔し、その小径孔に水を充填し冷媒を循環させ 凍結させる。これによって凍結膨張圧が発生し、鉄筋 周りのかぶりコンクリートが破壊・除去されるととも に、部材の内部に亀裂を貫通させることが可能であ る。その後外周に露出した鉄筋をガス溶断すること で、容易にブロック状に分断することが可能となる。 大型ブレーカを使うことなく解体することができるた め周辺への騒音・振動負荷を軽減できる。

本報告では,本技術の原理と凍結破壊実験について 報告する。

2. 凍結破壊の原理

水が凍るときに体積膨張を伴うことは一般によく知 られた現象であり、冷凍庫に入れた飲料水のガラス瓶 が中身の凍結により体積膨張を起こし瓶が割れてしま うことはよく目にする光景である。これは大気圧下に おいて水は0℃で凍り、そのときに約9%の体積膨張 を起こすことにより、ガラス瓶の中の圧力が上昇し、 ついにはガラス瓶が破壊に至るためである。図―1に 水の状態図¹⁾, 表―1に氷を含む三重点¹⁾を示す。1 気圧時の水の氷点は0℃であるが、圧力が上昇すると 氷点は下がり 209 MPa、-22.3℃にて全ての水が氷と なる。これはすなわち密閉状態にある水を-22.3℃以 下に温度降下させると最大 209 MPa まで内圧が上昇

表-1 氷を含む水の三重点

	圧力 (MPa)	温 度 (℃)
L - vap Ih	0.0006	+0.01
L - Ih - III	209	-22.3
L - III - V	350	-17.5
L - V - VI	632	0.1
L - VI - VII	2210	81.6
Ih - II - III	213	-34.7
II - III - V	344	-24.3
VI - VII - VII	2100	~ 0
Ih - XI - van	~ 0	-201

L:水, vap.:水蒸気, Ih~XI:図b 水の状態図 (20MPa~150GPa) 中の氷の記号を示す.

することを意味する。この性質を利用してコンクリー トを破壊するのが凍結破壊の原理である。

この水の凍結膨張圧を利用し、コンクリート構造物 を破壊するために、水を密閉する容器に鋼管を用い た。図-2に破壊管を示す。破壊管内部に冷却管を 設置し、破壊管内部充填した水を冷却する機構であ る。図-3にシステム構成図を示す。冷凍機で-30℃ に冷却したブライン(塩化カルシウム水溶液)を循環 することにより、破壊管内部に充填した水を-22.3℃ 以下に冷却すると破壊管内に充填した水が凍結し凍結 膨張圧が破壊管外管、間詰グラウトを介してコンク リート塊に伝達し破壊管装填孔の法線方向に圧縮応 力、これと直行する方向に引張応力が発生する。発生 した引張応力が破壊対象物の引張強度以上に達すると 破壊対象物は破壊に至る。

3. 凍結破壊実験

本技術を実用化するために,凍結破壊管凍結実験, 鉄筋コンクリート部材破壊実験,柱破壊実験,地中梁 破壊実験を行った。

(1) 破壊管凍結実験

破壊管内部に充填した水が凍結した時に,密閉状態 を確保したまま膨張することを確認することを目的に 破壊管凍結実験を実施した。写真-1に破壊管を示 す。破壊管の外管は φ 114.3 mm × t4.5 mm (SGP),

写真一1 破壊管

冷却管は *o* 21.7 mm × t2.8 mm (SGP) を用いた。破 壊管中央に 金ゲージ及び 熱電対を 設置し, 鋼管の 歪と 温度を計測した。鋼管の内圧は外管法²⁾により下式 で求めた。

$$P_{0} = \frac{E_{s} (k^{2} - 1)}{2 (1 - v_{s}^{2})} \quad (\varepsilon_{\theta} + v_{s} \varepsilon_{z})$$
(1)

E_s:鋼管の弾性係数

- v。: 鋼管のポアソン比
- k : 鋼管の外内径比
- ε_θ:円周方向ひずみ
- ε_z:軸方向ひずみ

図-5に表面温度と鋼管内部圧力の関係を示す。表 面温度が-0.5℃の時に円周方向の歪が1000μを超え た。-0.5 ℃の時の圧力は 24.11 MPa であった。-0.5 ℃ 以下の圧力は鋼管が降伏しており参考値となるが、鋼 管内に充填した水が漏れることなく凍結膨張し、鋼管 の歪が増大していることがわかる。-30℃において も、密閉状況を確保できていることを目視にて確認し た。

(2) 鉄筋コンクリート部材破壊実験

鉄筋コンクリート部材を破壊できることを確認する ために, 高さ1m, 幅1m, 長さ1m (鉄筋量:0.97%, コンクリート圧縮強度:40.9 N/mm²)の鉄筋コンク リート部材を作成し、破壊実験を行った。試験体は3 体作成し、破壊管の設置本数を1本、2本、3本とした。 破壊管1本の試験体は、ダイアモンドコアドリルで鉄 筋を切断し、鉄筋による拘束を無くした。破壊管の外 管は φ 89.1 mm × t4.2 mm (SGP), 冷却管は φ 21.7 mm × t2.8 mm (SGP) を用いた。鉄筋コンクリート 部材にあらかじめ設けた φ 105 mm × L850 mm の穴 に破壊管を挿入し、隙間にはグラウト材を充填した。 破壊管内部に水を充填し、冷却管内にブライン(塩化 カルシウム溶液)を循環し、水の冷却を行った。

写真―2に破壊状況を示す。全ての試験体におい て、ひび割れが発生した。鉄筋量 0.97%程度のコンク リート構造物は、破壊管2本で破壊できることを確認 した。図-6に破壊管3本のひび割れ幅の経時変化 を示す。冷凍機運転開始してから、90分でひび割れ が発生し、ひび割れの拡張は205分で終了した。図-7に温度の計時変化を示す。ひび割れ発生時のブライ

図-6 ひび割れ幅の経時変化(破壊管3本)

破壊管1本

写真-2 破壊状況

ン温度は、-13.7℃であり、ひび割れ拡張終了時のブ ライン温度は-26.7℃であった。ブライン温度は-26.7 ℃まで冷却できる冷凍機を用いれば、本技術を適用で きることを確認した。また、冷凍機を3.5時間以上運 転すれば、ひび割れの拡張は終了し、冷凍機の運転を 停止できることを確認した。

(3) 鉄筋コンクリート柱の破壊実験

鉄筋コンクリート柱部材を破壊できることを確認す るために、500 mm 角、高さ2300 mm の柱の凍結破壊 実験を2体実施した。図—8に試験体図を示す。柱主 筋は4-D16 (SD295),帯筋はD10 (SD295@200 mm), コンクリートの設計強度は24 N/mm² である。破壊管 の外管は φ 89.1 mm × t4.2 mm (SGP),冷却管は φ 21.7 mm × t2.8 mm (SGP)を用いた。破壊管は側面 に4本配置した試験体と柱上面に1本配置した試験体 を作成した。**写真—3**に柱破壊状況を示す。破壊管

破壊管側面配置 写真一 3 柱破壊状況

図-10 シミュレーション解析結果

を側面に配置した試験体は,破壊管を中心に放射状に ひび割れが発生した。凍結管を上面に配置した試験体 は,柱を割り裂くようにひび割れが縦方向に発生し た。破壊管を用いて,柱にひび割れを発生させること ができることを確認した。

(4) 地中梁破壊検証実験

鉄筋コンクリートの地中梁を破壊できることを確認 するとともに、鋼管間隔を確認するために、地中梁の 破壊実験を実施した。図―9に試験体図を示す。コ ンクリートの設計強度は21 N/mm²である。配筋は短 辺方向が D10@200 ダブル(SD295A)、長辺方向は、 D16@200 ダブルである。破壊管の間隔は、500 mm、 1000 mm、1400 mm、1500 mm、2000 mm とし、埋

写真-4 地中梁破壊状況

写真一5 切断断面

め込み深さは、400 mm とした。図— 10 に破壊シミュ レーション解析結果を示す。破壊鋼管の間に応力が集 中していることがわかる。写真— 4 に破壊状況を示 す。全ての破壊管の間にひび割れが発生した。鋼管間 隔を 2000 mm としても、地中梁にひび割れが発生す ることを確認した。

ひび割れが内部まで入っていることを確認する為 に,ひび割れ方向に対して垂直にカッターを入れ,ひ び割れ深さを確認した。写真—5に試験体断面を示 す。ひび割れは,試験体の裏側まで貫通していること を確認した。試験体の半分を重機で破壊し,解体時の ひび割れの影響を確認した。重機によるコンクリート の圧砕はひび割れ部でとまり,鉄筋だけが残り,ひび 割れ部でコンクリートの縁が切れていることを確認し た。鉄筋はガスで切断し,コンクリート部材をブロッ ク化して搬出した。写真—6にブロック化の状況を 示す。

ひび割れ幅を拡張し,鉄筋をガス切断することがで きれば、コンクリート部材のブロック解体が可能にな ると考えられる。今後,凍結破壊管の改良を行い、ひ び割れ方向性誘導を検討していく予定である。

写真-6 ブロック化の状況

4. おわりに

本技術の原理および破壊実験について報告した。破 壊管を用いて水の凍結膨張圧により,コンクリート構 造物にひび割れが発生することを確認した。ブロック 解体するために,更なるひび割れ幅の拡張の検討が課 題である。

本技術を用いて,基礎梁,フーチング,造成杭など の大型鉄筋コンクリート部材をブロック状に分断する ことで,低騒音・低振動・少粉塵で解体し,近隣環境 への負荷を低減することで,地域社会に貢献できれば 幸いである。

JCMA

《参 考 文 献》

- 日本雪氷学会編:新版 雪氷辞典,付録Ⅱ水の状態, pp.240, 日本雪 水学会, 2014.
- 2) 原田哲夫ほか:静的破壊剤を用いたコンクリートの解体に関する基礎 的研究、土木学会論文集第360号、V-3、pp.61-70、1985.8.

[筆者紹介]
三輪 明広(みわ あきひろ)
戸田建設(株
技術研究所

小椋 浩(おぐら ひろし) (株精研 凍結本部技術設計部

植木 和幸(うえき かずゆき) (㈱精研 凍結本部営業部