7. 土砂のパイプ輸送における含泥率と
沈降限界流速の測定結果

建設省関東技術事務所 須田光俊
小野寺 勇

1. まえがき
土砂のパイプ輸送において、管内流速を設定するためには、流送中の土砂が管底部に沈降し始める管内流速、すなわち沈降限界流速の把握が必要である。沈降限界流速を求める2～3の実験式はあるが、それらは主として単一粒径の砂についてのものであり、普通の土砂を用いた場合と多少異なる。
そこで、関東技術事務所では150 A鋼管を用いた実験管路により粒度分布の異なる4種類の土砂を用いて、含泥率を変えた場合の沈降限界流速の測定を行った。

2. 実験装置
本実験に用いた装置を図-1に示す。立上り管の配管角度は30°、45°、90°の3段階とした。

3. 実験条件
3-1 実験土砂
本実験に用いた土砂は、利根川水系並びに鶴見川水系でとれた4種類の砂である。土砂別の粒径加積曲線を図-2に示す。

3-2 測定方法
含泥率調整装置により混合液を作り、ポンプ圧送する。ピッチバルブにより流速を操作し、土砂の
沈降が生じた時の管内流速を限界流速として求めた。

3-3 含泥率
土砂の見掛け容積投入量及び混合液の管内流速は常時把握できることから、含泥率（見掛け容積）
Cu は次のような計算により得られる。
容積減少率：K = Vb/Va  
Vb: 水中での Va の容積（m³）
Va: 土砂投入時の Va の容積（m³）

Cu = Qs × K/Q × 100（％）  
Qs: 土砂投入量（m³/m²）  
Q: 管内流量（m³/m²）

4. 結果
土砂別の含泥率変化に伴う限界流速の測定結果と限界流速を求めるによる用いられるスモールドウェイレフ、Durand 実験式による計算値を図-3～6に示す。

図-3

図-4

図-3 Vu - Cu 線図 (Aの土砂)
図-4 Vu - Cu 線図 (Bの土砂)
全般に含泥率が10〜15％までは限界流速も増すが、それ以上の含泥率では若干低下成いはフラットな変化の傾向を示している。その中でも低下の傾向は、A及びBの土砂の場合が大きい。

限界流速値は、粒径の大きな粒子で構成されているDの土砂の場合が最も大きく、粒径の小さな土砂になるに従い限界流速値も小さくなる傾向を示した。また、配管角度が増すと限界流速も幾分増す傾向を示した。

Durand及びスモールドウイレフの実験式による計算値と限界流速の実測値との比較では、A及びBの土砂の場合10〜15％程度までは、スモールドウイレフの代表粒径が2mm以上の場合の式による計算結果に値及び変化の傾向が近似した。また、Cの土砂の場合、値は小さいがDurandの実験式と同様の変化の傾向を示し、Cより代表粒径の大きいDの土砂の場合、含泥率20％程度まではDurandの実験式による計算結果と値及び変化の傾向が同様であった。

なお、各実験式に用いた代表粒径とは図-2において加積通過率50％時の粒径である。
5. 考察

5-1 実験式の適用の度合

Durand の実験式

\[ V_l = \sqrt{2 \cdot g \cdot (S - 1) / D} \] (m/s)

\[ F : \text{代表粒径と含泥率による係数} \]
\[ D : \text{管内径 (m)} \]
\[ g : \text{重力加速度 (m/s²)} \]
\[ S : \text{比重} \]

スモールドウレイフの実験式

代表粒径 (d) が 2 mm 以上の場合

\[ V_l = \frac{C \cdot f_m \cdot C (S - 1) \cdot D}{1 - \left( \frac{d}{D} \right)^2} \] (m/s)

代表粒径 (d) が 2 mm 以下の場合

\[ V_l = \frac{C \cdot \sqrt{D} \cdot C (S - 1) \cdot V_{sg}}{\sqrt{d}} \] (m/s)

\[ C^* = 7 \sim 8 \quad (D > 250 \text{ mm}) \]
\[ f_m = 0.3 \quad (砂利) \]

\[ C : \text{真容積含泥率} = C = 8 \sim 9 \]
\[ V_{sg} = (1 - C)^2 \left( 1 - \left( \frac{d}{D} \right)^2 \right) V_{so} \]

\[ V_{so} : \text{自由沈降速度 (m/s)} \]

代表粒径が小さい土砂 (A 及び B) は、低含泥率の範囲でスモールドウレイフ (d > 2 mm) の式が適用し、代表粒径の大きい土砂 (D) では Durand の式がほぼ全般に対し適用するといえよう。

これからの実験結果と計算結果の差は、実験式を求めるための実験に用いた土砂はバラツキが少なく、単一粒径に近いものであったことに対し、本実験に用いた土砂は、自然界に存在する複合粒径の土砂であったことの影響によるものと考えられる。

5-2 A 及び B の土砂による限界流速の変化

A 及び B の土砂の場合、含泥率10～15%を境にそれ以上の含泥率では限界流速が低下する結果となった。これはいずれの土砂も粒子に細かく、シルト、粘土分が多いためこの細粒群の影響により母液の比重が全体に大きなものとなり、他の粒子の沈降を妨げることによるものと推定される。

5-3 細深濃度 (含泥率) の現状

現在、細深ポンプの能力は表1に示す細砂の含泥率10%を基準とし、表2に示す各クラス別の管内流速から決定している（運輸省作業船設計基準）。この含泥率10%は長時間の実作業で、安全性、操作性等が良好な作業を行った結果から平均的な値として割り出された値である。従って短時間では30%程度の含泥率で運転されても支障のないことが必要であるとされている。

表1 土質別含泥率

<table>
<thead>
<tr>
<th>土質</th>
<th>粘土・シルト</th>
<th>細砂</th>
<th>粗砂</th>
<th>砂(砂利)</th>
</tr>
</thead>
<tbody>
<tr>
<td>含泥率</td>
<td>12～20%</td>
<td>10～12%</td>
<td>8～10%</td>
<td>4～6%</td>
</tr>
</tbody>
</table>

表2 クラス別速築船管内流速

<table>
<thead>
<tr>
<th>機種</th>
<th>管内流速</th>
</tr>
</thead>
<tbody>
<tr>
<td>小型船</td>
<td>3.5 m/s</td>
</tr>
<tr>
<td>普通型・中型船</td>
<td>4.0～4.5 m/s</td>
</tr>
<tr>
<td>大型船</td>
<td>5.0 m/s</td>
</tr>
</tbody>
</table>

6. あとがき

本実験は鋼管150 Aのみの管路で行ったことから、管径が異なることによる限界流速の変化の把握も重要となる。また、本実験に用いた土砂は人力によりほぼ完全に除塵を行ったのであるが、現在この除塵を効率的に行う除塵機の開発を進めている。

-28-