33. 旭川ダム水中取水塔基礎プレパックドコンクリート工事における細骨材の表面水管理方法について

岡山県下村章、熊谷組上西一・本田勉

1. まえがき

プレパックドコンクリートの品質は施工方法により大きく影響されるが、なかでも注入モルタルのコンシスタンシーはその支配的要素である。プレパックドコンクリート工法は本西連絡橋工事でその大量急速施工法について研究開発が進められ、モルタル管理もコンピューター制御による全自動モルタルプラントにて行われている。しかし注入量が小規模な場合や、工事が短期間の場合、また現場にプラントヤードが十分に確保できない場合など、全自動プラントの採用が経済的に見合わない場合も多いと考えられ、こうした場合簡易なプラント設備で、かつモルタル品質の確保が必要される。当現場では連続ミキサーの採用によりプラント設備を簡易化し、またサンドコントローラーを用いて砂の表面水率をあらかじめ一定とすることによりモルタルのコンシスタンシーを確保し、注入を順調に行うことができた。

2. 工事概要

昭和29年完成の岡山県旭川ダムでは、洪水調節能力および都市用水供給能力の増大を目的として、貯水池内の未利用水1800万㎥を放流できるよう新たに水中取水塔による表面取水設備を施工中で、斯様なダムの再開発として注目される工事である。表面取水設備は高さ45.39mの取水塔、延長195.1mのトンネルおよび放流能力25㎥/secの放流設備から構成される。取水塔のうち基礎部は外径 mの鋼製外板と放水トンネル内張りを組合せた内径5mの内部取水管とからなる円筒構造であり、高さは取水塔の自立が可能な規模として7.89mである。総容積約1200㎥の基礎コンクリートはプレパックドコンクリート工法により打設された。
3. モルタルプラントの検討

旭川ダムでは山間部のため地形的に広いプラントヤードの確保が困難である。またモルタル注入は注入速度を30㎥/分として連続20時間の打設となるため、従来ごく用いられる手動のバッチ式簡易プラントではモルタル品質のバラつきは避けられず、トラブルの発生も予想される。そこで

(1) 生コン工場でモルタルを製造し、ミキサー車にて現場へ運搬、使用する方法

(2) 現場に設備が簡易なモルタルプラントを設置する方法

の2案について検討した。生コン工場案については、近隣の工場を使用することによりモルタル供給は可能であり、また運搬後のモルタル品質も確保できると判断されたが、万一の生コン工場での故障発生や運搬経路の交通遮断等の場合に対応するために、現場に備えたプランクトが必要と考えられ、それより予備プランクト能力を拡大して現場プランクトの方が得策と判断された。

3-1 連続ミキサーの適用

プラントヤードが小さく、モルタル品質の確実なシステムとして連続ミキサーの適用を検討した。

連続ミキサーの材料供給精度は計量チェックの結果、生コン工場のJIS規格を上回るほどで十分信頼できるものであった。したがって各材料は定量供給されるが、このうち砂の表面水の変動に起因して、単位水量が変動要素となる。

いま表面水率が±1%変動すると、示方配合からW/Cが±1%変動すると、W/Cが砂の変動がモルタルのフロー値に与える影響を示す例が図-3である。W/Cが小さいほどその影響は顕著である。当現場の示方配合による試験練りの結果からは、フロー値を所定の範囲内とするためには、砂の表面水率の変動は±1%以内となるよう管理されねばならないことが明らかとなり、通常の曇天乾燥等でこの範囲内に収まるのは困難と考えられる。したがって確実な表面水管理手段を模索する必要がある。

本四連絡橋の全自動プラントではバッチミキサーが使用されており、ここでは砂の表面水は1バッチごとに急激に変化することはないという考えのもとに、10バッチごとの平均フロー値から水と砂の計量値を自動調整する方法をとっている。しかし連続ミキサーにおいては、フロー値の測定結果から給水量を補正するという受動的な対応では廃棄モルタル量の増大は避けられず、また砂の表面水変動に対応して連続的に給水量を調整するのも極めて困難である。そこでむしろ能動的な対応策として、あらかじめ砂の表面水率を一定にコントロールする方法を検討した。

3-2 サンドコントローラーの導入

サンドコントローラーは図-4のような構造で、上部から投入された砂にインペラの羽により速度エネルギーを与え、反射板に衝突させることにより、砂から表面水および浮遊を分離させて砂の表面水率を一定にする機構である。ただし処理後の砂の表面水率は土として砂の粒度に支配され、既定の実績では保水性の良い細砂で10%程度、保水性の劣る粗砂では5%程度となるもので、現在のサンドコントローラー

国-4 サンドコントローラーの構造
ラーやてこの値は任意には設定できない。本施工で使用した細砂（鳥取県東倉敷産、FM=1.40）に対する表面水の処理性能試験結果は図-5のようであった。すなわちサンドコントローラーに投入される処理前の砂の表面水率が10〜15%であれば、処理後の表面水率は10.6±1%の範囲内となる。したがってストックヤードに野積された砂に対して、サンドコントローラーへ投入する前にベルコン上で散水して表面水率を12.5±2.5%としてやれば、処理後の砂の表面水率の変動幅は所要の±1%内に管理できるわけである。

一般にプレバックドモルタルに使用される砂はFM=1.4〜2.2の細砂であって、非常に保水性が良いため、表面水率がある値を越えると十分に脱水できなくなる。図-5に示すように、今回の細砂ではその限界値は15%であるが、このため散水量を12.5±2.5%の表面水率内となるようコントロールする必要がある。このことは逆に、散水量をあらかじめ12.5%にセットしておくば、表面水率の変動幅が士2.5%まで許されることを意味しており、言わばサンドコントローラーの導入により砂の表面水率の変容変動幅が2.5倍に拡げられたことに相当する。ただし、現在のサンドコントローラーの性能では、この細砂に対しては2.5倍に拡げるのが限界である。

この結果散水量のコントロールがポイントとなるが、±2.5%の変動幅で散水量を流量計を用いて人手管理することは十分に可能と判断された。

モルタルプラントの設備を図-6に示す。プラントはこの設備で1,600m³程度と、生コン工場の想定で設計、ダム下流右岸に敷地をわずかに造成することで解決可能となるので、この現場プラント案の採用に踏み切った。

モルタルプラントにおけるパラメータは表-1に示す要領で行なった。

またモルタルの示方配合を表-2に示す。

4. 施工実績

モルタル注入は連続12時間で行われ、注入量は528㎥であった。注入量から逆算した粗骨材空隙率は44%となった。

サンドコントローラーの稼働実績および処理後の砂の表面水率を図-7に示す。注入当日は好天に恵まれたため野積砂の表面水率の変動は大きくなく、サンドコントローラーの威力を十分に発揮するに
は知らなかったが、それでも野積砂の4±2％に対し、処理砂の表面水率は10.6±1％に収まており、それをゆえ連続ミキサーにおいて給水量を調整することなくフロー値を15～20secに収めることができた。図-8は連続ミキサーの稼動実績とフロー値の変動である。連続ミキサーはその性能上、運転開始直後にフロー値が安定せず、モルタルを廃棄しなければならなかったが、運転開始より1～2分経過すれば安定したモルタルとなることが確認できた。

図-7 サンドコントローラーの稼動実績

図-8 連続ミキサーの稼動実績

型わく内のモルタル打上り高を図-9に示す。
モルタル上昇高はほぼ均一で、流動勾配も最大2％程度であり、極めて良好な注入が行えなかったことを示している。

モルタルおよびプレバックドコンクリート
供試体の圧縮強度は表-3のとおりで、いずれも目標強度を上回る値が得られた。

5. あとのき
表面取水設備工事は昭和58年の完成をめざして現実に施工中であり、本報告ではこのうち取水塔基盤のプレバックドコンクリート工について、とくに砂の表面水管理手法を中心に述べた。工事の全容については、竣工後にあらためて御報告する機会を持たたいと考えている。