25. 新しい細骨材の水分調整装置の開発と施工例

大成建設㈱ 会田 紳一

1. はじめに

土木・建築工事に使用されるコンクリートには、細骨材として砂などの細粒材が用いられる。その砂に付着する水分は、降雨・日照・湿度等の影響を受け砂の重量比で約0〜15％のばらつきの幅が出る。特に野積みされた貯蔵状態においては、表面部分から内部に至って、多様に多様になる傾向を示す。その変化の程度も著しい。

一方コンクリートは水・セメント比などで管理されている事からして配合される砂の付着水分のパラッキはその強度に影響を及ぼす。

現在、バッチープラントでの表面水量の管理方法としては、赤外線・静電容量・中性子など各種の水分測定装置が試みられているが各バッチ毎の表面水量を正確に測定する方法はまだ開発されていない。

今、計量機器の精度の向上を図っている一方で、砂の表面水のパラッキによって各バッチ毎の砂の重量に設定重量との差が大きいことが明らかにされている。

本論文は、細骨材の表面水に起因するコンクリートの品質変動を無くすことを目的として、バッチープラントに供給する細骨材の表面水を、あらかじめ所定の値に調整する装置の開発および施工例について報告するのである。この装置は、運動エネルギーを利用し、全細骨材の表面水を効率的に高精度かつ経済的に調整することが出来、山砂の景色除去及び海砂の塩分除去についても併せて有効であることが確められている。

2. 水分調整装置の原理

新しく開発された水分調整装置の原理は、表面水を含む細骨材に速度エネルギーを与え、これをライナーあるいはローターなどに衝突させた時の慣性力の相関を利用してあるのである。すなわち、衝突時の衝撃力により、細骨材の表面水の重量ジウムライナーあるいはローターなどの板面に沿って移動し、反板面から反発し落下する細骨材の表面水は、細骨材の種類、粒度および速度エネルギーなどに応じて一定量となることを利用したものである。なお、ライナーあるいはローターなどの板面に沿って移動した水分は、外部へ排出される。又、この時に山砂の分水および海砂の塩分も水分と共に外部に排出される。

エネルギーを与える方法により、現在2種類の装置が開発され市販されている。回転円板を用いて遠心力を利用するA法と回転円板周辺のブレードにより速度エネルギーを与えるB法による装置である。装置の概要を図-1および写真-1に示す。

A法は、回転円板のインペラ中心部に細骨材を供給し、それをインペラ周辺部に配置した分散片を介して細骨材を飛ばさせる。速度エネルギーを与えた水分を含む細骨材は、インペラより適当な距離をとったライナーに衝突し、その際に水分などはライナー板面に沿って流れ、又、細骨材は反発して、それぞれ分離する方法である。
B法は、並列に設置した同時回転するインペラとドラムの微少な隙間に、細骨材を上部より帯方向に均等に投入して、インペラ周囲部に設置したブレードにより細骨材に速度エネルギーを与える。そして、この細骨材を複数の回転ローラに衝突させることにより、細骨材からA法と同様に水分を分離する方法である。

図-1及び写真-1水分調整装置概要

3. 水分調整装置の機械仕様
水分調整装置は、1時間当たりの砂の水分調整能力が10㎥、20㎥および40㎥のものが完成されている。その機械仕様を、A法、B法それぞれについて表-1に示す。なお、それぞれの装置には、付属装置として、散水装置および流量計がセットされている。

A法仕様

<table>
<thead>
<tr>
<th>形式</th>
<th>SCT-10</th>
<th>SCG-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>モータ</td>
<td>11.0kW</td>
<td>6P</td>
</tr>
<tr>
<td>本体インペラ</td>
<td>22.0kW</td>
<td>6P</td>
</tr>
<tr>
<td>本体揚圧装置</td>
<td>2.5kW</td>
<td>4P</td>
</tr>
<tr>
<td>調整供給機</td>
<td>5.5kW</td>
<td>4P</td>
</tr>
<tr>
<td>排出荷重機</td>
<td>2.2kW</td>
<td>4P</td>
</tr>
</tbody>
</table>

B法仕様

<table>
<thead>
<tr>
<th>形式</th>
<th>SCK-10R</th>
<th>SCK-20R</th>
<th>SCK-40R</th>
</tr>
</thead>
<tbody>
<tr>
<td>フレーム</td>
<td>1920</td>
<td>4300</td>
<td>4300</td>
</tr>
<tr>
<td>トーマス</td>
<td>4300</td>
<td>4300</td>
<td>4300</td>
</tr>
<tr>
<td>インペラ</td>
<td>2100</td>
<td>3000N</td>
<td>3000N</td>
</tr>
<tr>
<td>ドラム</td>
<td>570N</td>
<td>800N</td>
<td>800N</td>
</tr>
<tr>
<td>ローラ</td>
<td>670N</td>
<td>800N</td>
<td>800N</td>
</tr>
<tr>
<td>スクラバー</td>
<td>155N</td>
<td>155N</td>
<td>155N</td>
</tr>
</tbody>
</table>

尺寸表

<table>
<thead>
<tr>
<th>尺寸形式</th>
<th>SCT-10</th>
<th>SCT-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4050</td>
<td>4050</td>
</tr>
<tr>
<td>A'</td>
<td>1985</td>
<td>2300</td>
</tr>
<tr>
<td>A"</td>
<td>1750</td>
<td>1750</td>
</tr>
<tr>
<td>B</td>
<td>2400</td>
<td>2400</td>
</tr>
<tr>
<td>R</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>B"</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>本体径</td>
<td>1640</td>
<td>1930</td>
</tr>
</tbody>
</table>

仕様化

<table>
<thead>
<tr>
<th>尺寸形式</th>
<th>SCT-10</th>
<th>SCT-20</th>
<th>SCT-20</th>
<th>SCT-40R</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4300</td>
<td>4300</td>
<td>4300</td>
<td></td>
</tr>
<tr>
<td>A'</td>
<td>1920</td>
<td>4300</td>
<td>4300</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2190</td>
<td>3000N</td>
<td>3000N</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2550</td>
<td>3990N</td>
<td>4050N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>860</td>
<td>1460N</td>
<td>1460N</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>780</td>
<td>970N</td>
<td>1770N</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>16</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>920</td>
<td>1125N</td>
<td>1250N</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>620</td>
<td>740N</td>
<td>1490N</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>200</td>
<td>350</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>270</td>
<td>700</td>
<td>700</td>
<td></td>
</tr>
</tbody>
</table>

- 98 -
4. 調整後の砂の特性

a) 表面水率
水分調整装置を通じて排出する前の表面水率を横軸に、
又、綫軸には通過後の表面水率を採ってプロットした
例を図-2に示す。調整することにより、表面水率の
変動が小さくなる。例えば、図中に破線で示すように、
調整前の表面水率が6.2%から12.9%の範囲のパラ
テルの川砂は、調整後の表面水率が5±1%の範囲に
調整することができる。

又、実際のバッチープラントにおいて調整装置を用
いて砂の表面水率を管理した管理グラフを図-3に示
す。なお、この場合表面水率の測定に中性子水分計お
よび乾燥法を用いた。

b) 細骨材の粒度
調整装置内で速度エネルギーを与えられた細骨材は、
衝突時に細骨材粒子が破砕され、又、水と共に微粒子
が排出されて、粒度が大幅に変化することが懸念さ
れる。しかしながら図-4に示すように、大幅な粒度
変化がないよう、与える速度エネルギーを設定して
いる。

c) 海砂の塩分除去
海砂の表面水を調整すると、塩分も除去できる。
図-5に示すように、調整前の表面水率が多いほど除
去効果が大きい。この例では、15%の表面水率の海
砂で約60%に塩分を除去できた。図-6は、図-5の
結果に基づいて、クラシファイヤを併用した場合の
塩分除去能力の試算例である。陸上での海砂の含水率
を5%にしたがって、塩分濃度が0.15%の海砂につ
いて、まずクラシファイヤでの脱塩処理を、海砂重量に
に対し10%から30%に変化させて塩分を除去した後で、
水分調整前の含水率を15%と仮定して表面水
を5%に調整した結果である。少量の水の補給によ
り、進次して効率よく塩分も除去できることを示す例
といえよう。又、水分調整装置は、塩分に限らず山砂
や陸砂などに多く含まれている泥分についても、同様
な除去効果がある。
5. 施工例

細骨材の水分散調装置は、昭和53年に開発され、今日迄にトンネル工事にコンクリートを主体として土木工事の現場プラント、建築工事の現場プラント、コンクリート2次製品工場およびレデーマックスコングリート工場などに、200台以上実用化されている。これまではSECコンクリートにおける骨材の表面状態の管理に不可欠なものとして実用化されてきたが、骨材採取業における細骨材の精製、及び、一般のコンクリートにおける品質のバラツキの低下を図る有力な装置として注目されている。水分調整の管理成績の施工例を図-7および図-8に示す。図-7は、東京電力伊方発電所事務所等級の工事の例で調整能力が20
m3/Hの結果である。細骨材は、大阪間鳥崎産の粗目の山砂と福岡県志賀島産の細目の山砂を混合して、JASS5の1級品に合格するようにしたものである。比重は2.51、粗密率は2.78、吸水率は2.23%であった。調整した砂の表面水率は、15.5±0.5%の範囲になった。打込み量が1900m³のSECコンクリート用い、プリニング量が0.15cm³以下と高級コンクリートの目標をはるかに下回る高品質な、品質変動の小さいコンクリートの製品に役立った。図-8は、

図-7 調整後表面水率の管理図（山砂）
図-8 調整後表面水率の管理図（海砂）

図-2 生コン工場操動状態

コンクリートブロックの製造に用いられている細骨材の結果である。北海道工業産の海砂で、比重は2.67、粗密率は2.65、吸水率は1.94%のものを、調整能力が20m³/Hで調整した。表面水率は4.3%で、管理幅が±1%の範囲に収まっている。品質と耐久性の向上を目的としたSECコンクリートの製造に用いられている。細骨材生コン富良野工場での操動状態を写真-2に示す。調整砂を用いた品質の安定したコンクリートを製造供給している。

最上に、水分散調装置の使用費、SCK-40Rの装置を使用し、一般的な細骨材を調整する場合、設備投資費は約50円/m³、ブレードなどの消耗品費約95円/m³、電力費約15円/m³、合計160円/m³の費用となり、コンクリートm³に換算すると100円以内の費用となる。

6. おわりに

細骨材の表面水を所定の値に連続的に調整する装置の開発と施工例について報告した。この装置は常温エネルギーを消費することなく、長時間で多量の細骨材の水分を円滑かつ高能率に調整ができる。バラツキの少ない高品質コンクリートの製造には不可欠な装置であるといえよう。又、表面水の調整だけでなく、部分的除去ができますとともに、海砂中の塩分の除去も従来の方法に比べて少量の水の添加により効果的に行うことができる。