1. 泥水シールド工事におけるトータル施工管理システム

編集関係 広本 哲−・古川 斎治・上野 幸三郎

1. まえがき

泥水加圧式シールド工法は、広範囲にわたる地盤条件下の工事に採用されており、もっとも汎用性に富む優れた工法といえる。しかし、同工法における施工管理は、現状では技術者やシールドマシーンのオペレーターの経験や研修によるところが多く、データに基づいた技術的判断をもって管理を行うに耐えているとは言い難く、しかも詳細なデータが保存されている例も少ない。

近年、シールド工事はより厳しい社会的制約条件および劣悪な地盤条件下での工事が増加してきており、このような工事では従来のように施工管理手法で対応していくのは難しくなってきた。

そこで、パーソナルコンピュータを導入して精度の高い、しかも即応性のある泥水シールド工事におけるトータル施工管理システムを開発した。

本稿は、このトータル施工管理システムの概要を述べるとともに、大塚レク地盤における泥水シールド工事におけるシステムを導入した結果などをについて述べたものである。

2. トータル施工管理システムの概要

トータル施工管理システムは、次に示す6つの管理システムで構成されており、このうち①〜④はシールドの推進という作業に関するもの、⑤および⑥はシールド推進によって生ずる現象に関するものである。

① 推進管理システム（切羽の安定確保、適切な推進・泥水輸送状態の維持）
② 泥水品質管理システム（泥水品質の調整）
③ 裏込注入管理システム（確実な裏込注入）
④ トンネル線形管理システム（計画線形の確保）
⑤ 地盤変状管理システム（地盤の変状把握）
⑥ 重要構造物変状管理システム

図-1 システムハードウェア構成

表-1 各管理システムの計測項目
トータル施工管理とは、①～⑥の管理を総合的および有機的に行うことであり、具体的には多種・多量の情報を迅速に処理し、データの統計的判断、それぞれの情報の相関などから施工管理を行うことである。トータル施工管理システムのハードウェアは、図-1に示すように3台のパーソナルコンピュータで構成されており、各管理システムにおける計測項目は表-1に示すところである。表-2は、各管理システムにおける作業内容を示したものであり、図-2～図-5は、モニターの一例として掘進管理におけるモニターを示したものである。

表-2に示したように、当システムでは多種・多様のアウトプット様式が準備されており、実際の管理はこれらのアウトプットを判断資料とした施工管理のフローチャートを各管理項目ごとにあらかじめ作成しており、そのフローに従って行なう。図-6は、管理フローの代表的な例として掘進管理におけるフローチャートを示したものである。また、表-3は掘進管理において予想される異常事態と計測値の変動状況を事前に想定したものであり、異常事態の早期発見や対策工の選定などに活用される。
図-6 掘進管理フローチャート

図-7 工事位置図

表-3 考えられる異常事態と計測値の変動状況

3. システム導入工事の概要

本工事は、兵庫県武庫川流域下水道整備事業の一環として尼崎市内に泥水加圧式シールド工法により円形管渠を整備するものである。施工地域は、筋橋する路路交通、地下埋設物、近接する新幹線高架橋等の重要構造物などの各種制約条件に加え、施工対象地盤が帯水層地盤であり、地下水位が高く、しかも土被りが非常に狭いという悪条件が重なっていた。したがって、施工に際しては高度の技術が要求されるとともに、精度の高いしかも即応性のある施工管理が必要不可欠であり、前述したタイマー施工管理システムを導入した。

工事の大要は以下に示すとおりであり、工事位置を図-7に、代表的な横断面図を図-8、図-9に示す。

工事名称：武庫川流域下水道左岸第二幹線管渠整浸工事（時友工区）

発注者：兵庫県

工事場所：兵庫県尼崎市時友地区

工期：昭和57年6月～昭和59年3月
土 質：伊丹段丘礆層（帯水礆層）
確認最大礆径 600 mm
透水係数 2 × 10⁻¹ cm/sec
地下水位 GL-1.5 m 〜 -2.0 m
土 被り：3.0 m 〜 6.0 m
シールド機：外径 φ 3480 mm（ジョークラッシャー
内蔵型帯水帯水加圧式シールド機）
セグメンツ：外径 3350 mm（STEEL, RC）
仕上がり内径 φ 2600 mm
施工延長：755 m

4. システム導入の結果および効果
当システムを導入して得られた結果およびその効果
のうち、主なものを以下に列挙する。なお、表-4は
本工事の施工に際して提示された管理基準値と施工実績
を比較したものである。

① 土砂取込状況モニターから余振量を推定し、
その結果を裏込む住工の管理に応用した。すなわ
ち、従来は主に注入圧のみで管理していたものを
注入量、注入位置、および注入時期など総合的な
管理を行なうことにより、地表面沈下を従量的に抑
えることができた。

② 掘進状況モニターから、地山の条件や能力に
対応した適切な掘進速度を見つけることができ
た。すなわち、連続的な掘進が可能となり、結
果的には切羽の安定を保ちながら確実で迅速な施工となった。

③ 混水輸送状況モニターおよび各ポンプの負荷の経時変化から、ポンプの異常の早期発見や増
減時期および位置などを容易に決定できるようになり、トラブル処理の短縮およびトラブル
件数の減少などに役立った。

④ 混水品質管理モニターから混水の品質および処理方法が無事に指示されるよう混水の品質を常に
管理基準内に保つことができ、溢れ・崩壊を起こす確実で、しかも連続的な施工が行なえた。

⑤ ボンプ流入形管理では、計画現状に対するマシンおよびセグメントの位置・姿勢が即時に図表化
されるため、マシンの制御・修正が迅速かつ正確に行なわれ、施工精度の向上に役立った。

最後に、本工事にトータル施工管理システムを導入するにあたり深い御理解と御協力をいただいた
兵庫県阪神都市整備局の皆様、計器の設置およびシステム作成などに御協力をいただいた株式会社サン
コレに感謝の意を表します。