9. レーザ測量による出来高の管理システム

小野 豊一・小野 義久
安藤 学・浅山 芳夫

1. まえがき

建設業では、生産性の向上、安全性の向上、労働力の対策などが問題として取り上げられている。「21世紀への建設産業ビジョン」の中で、先端技術を有効活用し建設技術の高度化、施工システムの合理化、施工のロボット化等を通じて建設技術の付加価値を高めることの必要性を指摘している。これに対して、当社は建設機械の自動化に関する研究を進めているが、今回土木工事の施工から管理まで考慮して、土工機械の位置決めが行なえると同時に作業後の地形も評価できるレーザ測量による出来高の管理システムを開発試作したので報告する。

なお、本研究は建設省総合技術開発プロジェクト「エレクトロニクス利用による建設技術高度化システムの開発」において共同研究として実施した成果である。

2. 出来高の管理システム

2.1 システムの構成

本システムは土工機械の整地作業を対象として作業者の支援を行うことを目的としており、今回これをブルドーザの均平掘削作業に適用してシステムを構成している。

本システムを実際の作業現場に設置した場合の外観図を写真－1に示し、またシステムの構成図と機能ブロック図を図－1，図－2に示す。このように、システムは地上側装置と車載側装置を有するが、機能的には下記の2つの部分で構成されている。

1）位置検出部：レーザ測量により土工機械の三次元位置を検出して出来高情報を変換する。

（1）受光器P, Q (2)位置計測コントローラ (3)車載モニタ）

2）情報表示部：土工機械の位置情報と作業の出来高情報を表示して作業の支援を行う。

（4）投光器A, B (5)地上モニタ）

写真－1 作業現場におけるシステムの設置状況
2.2 システムの機能（ブルドーザの均平掘削作業仕様）

1）基準平面の形成
地上側で予め距離がわかっている2点にレーザ投光器を2台設置して、2台の投光器を同期制御しながら回転させてレーザ光の基準平面を形成する。

2）ブルドーザの位置計測
ブルドーザに装備した受光器でレーザ光の基準平面を検出し、三角測量によりブルドーザの高さおよび水平面の位置からなる三次元位置情報を位置計測コントローラにより算出する。

3）作業機の制御
ブルドーザの三次元位置情報と作業機の位置センサ出力を作業機コントローラに入力し、作業機の高さが常に目標の高さとなるように制御する。

4）出来高の管理
位置計測コントローラによりブルドーザの三次元位置情報を作業後の地形を表す出来高の情報に変換・記憶し、これをブルドーザ側および地上側で表示して作業の出来高の管理に利用する。

2.3 システムの特長

1）レーザ光による土工機械の三次元位置計測が可能である。

2）土工機械側でリアルタイムの位置計測を行うので作業機の制御に利用できる。

3）高速で高精度な作業機の制御により、土工作業が容易に行える。

4）土工機械の三次元位置情報を変換して、作業の出来高の管理情報として利用できる。

5）土工機械の作業状況が土工機械側および地上側の双方で同時に監視できる。
3. 計測と表示の原理

3.1 水平方向の位置

水平方向の位置計測の原理図を図-3に示す。
車載受光器の位置 P(X₁, Y₁) Q(X₂, Y₂) は、
図-3のように、投光器Aを座標の原点として
投光器A, Bを結ぶ方向をX軸とすれば三角測量
の原理によって以下のよう算出される。

\[X₁ = L₁ \cdot \cos α₁ \cdot \sin β₁ \cdot \sin (α₁ + β₁) \]
\[Y₁ = L₁ \cdot \sin α₁ \cdot \sin β₁ \cdot \sin (α₁ + β₁) \]
\[X₂ = L₁ \cdot \cos α₂ \cdot \sin β₂ \cdot \sin (α₂ + β₂) \]
\[Y₂ = L₁ \cdot \sin α₂ \cdot \sin β₂ \cdot \sin (α₂ + β₂) \]

また土工機械の姿勢角 (ヨーニング) \(\phi \) は、
\[\phi = \tan^{-1}\left(\frac{X₂ - X₁}{Y₂ - Y₁}\right) \]

3.2 鉛直方向の高さ

鉛直方向の高さ計測の原理図を図-3に示し、
土工機械の接地面高さの算出法を図-4に示す。
車載受光器の高さ P(h₁) Q(h₂) は、図-4のように、レーザ光の基準面を0とした場合の高さ
h₁, h₂として検出される。これより土工機械の
傾斜角 (ピッチング) \(\theta \) は、以下のよう算出
される。

\[\theta = \tan^{-1}\left(\frac{H₁ - H₂}{L₂}\right) \]

また土工機械の接地面の高さ Hは、図-5のように、
車載受光器の高さ h₁, h₂とオフセット h₀
から以下のよう算出される。

\[H = \frac{h₁ + h₂}{2} - h₀ \]

3.3 出来高情報の表示

作業の出来高情報は例えば以下の項目からなる。
1) 水平方向の位置情報：位置 (X, Y)，姿勢角 \(\phi \)
2) 鉛直方向の位置情報：高さ h₁, h₂，傾斜角 \(\theta \)
3) 作業状況の地図情報：作業後の接地面高さ H
4) システムの診断情報：エラー No, メッセージ

なお、以上の内容を車載モニタに表示した例を
図-6に示す。
4. システムの主仕様

<table>
<thead>
<tr>
<th>水平面における位置計測の範囲</th>
<th>100m×100m</th>
</tr>
</thead>
<tbody>
<tr>
<td>水平面における位置計測の精度</td>
<td>±0.1m</td>
</tr>
<tr>
<td>鉛直方向の位置計測の範囲</td>
<td>0.3m</td>
</tr>
<tr>
<td>鉛直方向の位置計測の精度</td>
<td>±0.01m</td>
</tr>
<tr>
<td>位置計測の所要時間</td>
<td>0.05秒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>水平面における地図表示の範囲</th>
<th>100m×100m</th>
</tr>
</thead>
<tbody>
<tr>
<td>水平面における位置表示分解能</td>
<td>1 m</td>
</tr>
<tr>
<td>地図表示の更新周期</td>
<td>1秒</td>
</tr>
</tbody>
</table>

5. あとがき

土工機械の三次元位置決めを行い、作業後の地形も評価できるレーザ測量による出来高の管理システムについて述べた。なお、作業後の地形評価機能を確認するため簡単なテストを行なったので、そのテスト現場外観と結果である鳥瞰図を写真－2、図－7に示す。

本システムの適用により、施工現場で走行・作業を行う建設車両等の三次元の位置や姿勢を自動的に計測することが可能である。これによって施工現場の地形状況をただちに把握して、土木施工の計画、土工量の算出、土工作業の最適化、出来高の評価・管理等が可能となる。

写真－2 地形評価のテスト現場

図－7 テスト現場の鳥瞰図

謝辞

本研究を進める上でご指導・ご協力を戴いた建設省土木研究所機械研究室の皆様に感謝致します。

参考文献
1) 長谷部正和：機械土工技術の展望、建設機械、pp19～21、1987