21. 大深度シールドトンネルの応力
についての一実験

大深度シールドトンネルの土圧、応力度は慣用法では既に実用に即さないと思われ、以下に述べる実験、解析を行い、一つの提案を行った。まず、実験は1000×1000×500の土槽に直径185mm、
肉厚1.6mmの鋼管を埋設した。

この土槽にベントナイトを溶けたE_50=1.5kg/cm²程度の模擬地盤を打設した。この土槽は
大深度シールドトンネルの1/100縮尺に相当する。

つぎにこの試料の粘弾性特性を調べるため粘弾性試験機で、クリープ、リラクゼーションの試験を行った。この試料の材令は2日でσ=0.2273kg/cm²であった。

この結果は図-1,2に示すように、早期では線型粘弹性の傾相を示すが、時間が経過すると
E∞には収れんせず、大きく変動する。これはモルタルと粘性土の性状の相違かと思われる。
写真-1は粘弾性実験の状況を示す。

東京都大深度の地層では粘着力があるため、粘弾性的な性状を示すものと思われるが、土丹
でこのような実験が行われた事は報告されている。1) また、粘土ではこのような粘弾性理論が
成立される事は既に報告されているが今回は村山教授の理論によった。2) これによるとクリー
プ、リラクゼーションにはtime factorを導入してつぎの形で示される。

\[E_c = E_\infty \left(\frac{a + b \log t}{a - b \log t} \right) \]
クリープに対して

\[E_r = E_\infty \left(a - b \log t \right) \]
リラクゼーションに対して

つぎに、前記鋼管中にパラフィンとヒーターを設置し、模擬地盤打設後48時間後にヒーター
でパラフィンを熱して融けて、トンネルの変形を許した。計測はトンネルの応力度を歪計で測
定し、クラウン外線、スプリングライン外線、インパート外線に20枚の歪計を張り付けた。実
験結果を見ると、経時変化は見られなかったが、これは実験精度にもよるものと思われ、今後
もっと大規模な模型実験を計画している。つぎのこの模型実験と有限要素法による解析解なら
びに、慣用法の解と比較を行った。今回の実験装置の概略の寸法は図-3に示すが、このモデル
をメッシュに切って有限要素法の解析を行った。この場合、地山のE_50に上記粘弾性実験によ
る値を適用した。この結果、クリープとリラクゼーションに対して外線応力度は経時変化を行
うが、いずれも時間と共に増加する傾向を示し、経験値と一致する。例えば、クリープでクラウ
ンでは0秒、σ_0=-21.3kg/cm²、20分後ではσ_0=-34.2kg/cm²、10時間後ではσ_0=-54.5kg/cm²
である。また10時間後の応力度の測定値と解析値を示すと、クラウンではσ_1=28.4kg/cm²、
σ_0=-34.3kg/cm²、測定値、σ_0=40kg/cm²となり、慣用法では575kg/cm²となる。また、ス
プリングライン上ではσ_1=-35.1kg/cm²、σ_0=24.7kg/cm²、測定値、σ_0=45kg/cm²、慣用法
ではσ_0=610kg/cm²となる。このように実験値と有限要素法の解析値は良い対応を示すが、慣
用法の値は大きくなる。
つぎに、この実験方法および解析方法は、シールドにより地山を掘削し、掘削と同時にセグメント覆工を施工したといった、いわば解析方法の基本的な形を想定したものである。しかし、我社では施工方法を加味した有限要素法による解析も行っている。例えば掘削後、裏込注入が直ちに行われず、それまでテールポイドの為、地山が変形し、クラウンとインバートでセグメントリングに接し、スプリングライン上で空隙が残っており、このような状態も想定することができる。また、この場合後方のセグメントリングにもテールポイドの存在が影響するがこのような場合にも解析が可能である。この他、二次覆工の施工による応力変化、MFシールドにおける柱の施工の前後の応力変化の解析も行っている。これらの解析方法に、上記の粘弾性特性を加味すればより一層適確な解析が可能となるであろう。

本研究を行うに際して、京都大学工学部土木工学科、小林昭一教授、愛媛大学工学部海洋工学科、八木則男教授に終始ご指導を頂いた。また、熊谷組技術研究所豊川管理部の皆様にもご協力を頂いた。ここに厚く御礼申し上げます。

参考文献
1）小島宏；東京港連絡橋と基礎地盤となる土塤の設計定数について、昭和63年度第2回岩盤力学委員会研究報告会 昭和63年11月24日
2）村山昭郎；粘土のレオロジー特性の確率論的考察、材料、14巻、159号、pp282～288、1985-4
3）野口利雄ら；シールド影響解析システムの開発とその計算例、熊谷技報、No40、pp1～12、1987-2
クリープ経時変化

\[\Delta R (N) \]

\[p = 0.1523 \text{ kN/cm}^2 \]

\[p = 0.0902 \text{ kN/cm}^2 \]

図-1

リラクゼーション経時変化

\[\frac{1}{P} (\text{kg}) \]

\[\epsilon = 1\% \]

\[\epsilon = 0.5\% \]

-84-