31. インテリジェントアームの開発

建設省中部技術事務所：野村 良一
*濱松 利行

1. はじめに

近年、建設省をとりまく環境の変化、中でも技能労働者の減少、労働者の高齢化等を背景として建設工事における作業環境の改善（悪環境での作業解消）、安全性の向上（危険作業の解消）、生産性の向上等に対する要望が高まっている。

これらに対応するには、建設工事の機械化に続く新しい技術革新が必要であり、自動化・ロボット化が求められている。施工合理化の面からはコンクリート二次製品（プレハブ製品）が多く使用されており、更に増加する傾向にある。現状ではプレハブ化が進んでおり覆付作業には人力に頼るところが多く、建設作業員が苦渋作業及び危険作業を行っている。

この様な現状から土木工事現場においてプレハブ製品を容易に取扱い、据付ができるインテリジェントアーム（プレハブ製品据付サポートロボット）の開発を行うものである。

また、建設工事現場におけるロボットの作業環境は、産業用ロボットと異なり屋外で作業が可能である。作業環境が進んでロボットと据付場所との位置関係が常に変化することから、完全自働化するのには、人間と同じ知能が求められる。インテリジェントアームは、プレハブ製品据付時の据付作業及び安全作業の解消を図ることを目的としたものである。

本報告は、現状分析からインテリジェントアームの基本構想（案）とりまとめ及び新規開発要素技術設計試作に至る経緯について中間報告を行うものである。

2. 開発調査計画

「開発調査フロー」を図-1に示す。平成元年度は現場環境調査を行った。平成元年度からは、共同開発を継続し、共同開発調査期間を三ヵ年として業務を進め、最終年度（H4年度）に試作機を製作し、現場試験を行い問題点があれば改良を加え実用機仕様の取りまとめを行う予定である。
3．構造検討（平成元年度成果）

3－1．基本構想検討

現状分析（掘付作業工程分析）の結果、コンクリート二次製品の掘付工程の前には必ず掘削あるいは整正等の作業工程が介在しており、砕石や砂が床均し材料として使用されていることから材料をすくう装置「バケット機能」が必要である。間知ブロック掘付の場合のように間知ブロック掘付後、裏込め・胴出し作業が繰り返される場合には、高所において効率よく裏込め・胴出し材料の投入作業が行えるように改良された「アーム反転機能」と「ボトムダンプ機能」が必要である。コンクリート二次製品掘付作業を機械に分担させるためにはブロックの移動・微調整を行う必要があり、無重力状態に近い状態のもとで小さい力で任意の移動位置決めが行える「バランス機能」が必要である。一人で作業することを前提に考えると、掘付場所にいながら機械の操作を行う必要性があり「ラジコン機能」を必要とする。その場合、熟練していない作業者がでも操縦ができるように考慮する必要がある。作業工程の一部を部分的に自動運転を行わせるためには、機械周辺の人の存在を認識し警報を発するか、あるいは人間が危険域内に侵入した場合、機械を自動停止させる安全装置が必要である。

以上のように現状分析、構造・要素技術検討の結果、本調査よりインタリジェントアームに組込む「要求機能・仕様（案）」及び「基本構想図（案）」を図2に示す。

図2、インタリジェントアームの基本構想（案）及び要求機能・仕様（案）
4. 捕捉据付機構の開発（クランプ・バランス装置＝平成2年度成果）

4-1. 平成元年の現場実態調査より捕捉対象ブロックを300kg以下の中形ブロック（間知ブロック、ヒューム管、接続ブロック、L・U字溝）からした。今回性能検討及び実証をかねて、形状が複雑で中部地盤内で多く使用されている間知ブロック（JIS規格 A5323の13（300*300*350））を対象として捕捉機構の検討を進めました。

捕捉機構は、実用化の可能性が高く、比較的安価でできメンテナンスが簡単な構造であることが望ましく、考慮した結果以下の構造が考えられた。

* クランプ装置機構
捕捉装置に関しても移動中に重量物を落下させないように抱え込み方式を採用した。

* バランス装置機構
本体コントロールボンプより供給された油圧を切り替えて上下動の微調整を制御する。
4-2. 間知ブロックの据付方法についての検討。

間知ブロック据付には、布積み・谷積みの方法があり、今回の機械にもこのような施工方法に対応可能な構造を有することが必要である。図-3に機構を示す。

図-3、谷積み・布積み機構

4-3. 据付装置全体構成図を図-4に示す。

図-4、全体構成図

5. おわりに

平成3年度は、全体構想による実験機を製作し、平成4年度に工場内で動作性能試験を行い、現場作業において実証試験を実施すると共に実用機の仕様を取りまとめる予定である。

最後に本報告書の作成にあたり、ご指導頂いた各関係各位に深く感謝の意を表す次第です。