44. “PASS工法”を施工する全自動
プレライニングマシンの開発

(株)フジタ: 永岡 昭彦・森 利夫
*上 博一・三村 洋一
神田 剛

1. はじめに

トンネル工事におけるNATM施工は合理的な設計が可能で経済性に優れているといわれているが、都市部においては地盤が軟弱であったり、地上に建物や道路がある場合など、その施工は大変難しいとされてきた。これに対し、地表面沈下を極力減らし、切羽の安定性を向上させる合理的な都市NATMとして、切羽前方にコンクリートでアーチをつくる「PASS工法」(Pre-Arch Shell Support Method)を開発した。

本稿は、このアーチシェルの施工用に開発されたプレライニングマシンの概要を実証実験の結果について報告するものである。

2. PASS工法概要

1) 施工手順

① 切羽前方地山に、5軸オーガにより厚さ17cm、幅81cm、長さ4mのスリット状掘削を行う。
② オーガの引抜きに合わせてコンクリート注入を行い、1ビースのコンクリート壁をつくる。
（削孔先端部2.5m）
③ ①、②をトンネル内周に沿って施工し、アーチ状のコンクリート壁をつくる。
（図－1、図－2）
④ このコンクリート壁の中を掘削し、支保工進込み、吹付コンクリートを施工する。
（図－3、図－4）

以上の作業を繰り返して、トンネルがつくられる。

2) 特長

① 地山前方の沈下量（先行変位）が小さくなり、地表面沈下を確実に抑えることができる。
② 切羽の安定性が向上し、大断面一括掘削が可能となる。
③ 従来の都市NATMに比べ、施工速度が向上する。
④ 切羽での作業は、アーチ状のコンクリートシェルの中で行われるため、安全性が向上する。
3. プレイニングマシン

1）開発条件

アーチシェルを施工するこのプレイニングマシンは、以下の点を考慮して開発された。
① 複線断面級トンネル（R=5.5m）をベースマシンの移動なく施工する。
② 任意の断面に対応する。
③ 他の機械との入れ替えが容易である。
④ 高い施工精度を確保する。
⑤ 施工スピードの向上、均一化を図る。
⑥ 運転操作を簡単にする。

2）構成

プレイニングマシンは、以下の構成からなる。
① オーガ式削孔機・・・φ170mm×L4,600mm×5軸。
② 多関節プレーマー・・・6自由度の関節にてオーガ式削孔機を支持する。
③ ベースマシン・・・旋回機構を装備。駆動は、エンジン・電動併用。
④ コンクリート注入ポンプ・・・吐出量0〜10m³/H。
⑤ 自動制御装置・・・自動制御盤、センサ、ターゲットミラー等からなり、オーガセット。削孔および注入作業を自動制御する。

なお、ベースマシンおよびオーガ位置を計測するために、自動測量システムがマシン後方に設置されている。

3）仕様

全長：15.5m 全幅：3.0m 全高：3.6m
重量：54.6t 容量：120KW
4）自動制御

アーチシェルを連続的に施工するためには、オペレータによる手動操作では、精度、品質、施工スピードとともに満足な成果が得られない。

これらの問題を解決するためにオーガセット、削孔および注入作業の自動化に取り組んだ。

作業フローを図-6（図-5参照：自動化範囲）に、施工状況を図-7に示す。
① オーガセット

自動測量システムは光波距離計等を用いて、マシン本体およびガイドフレームに取り付けられたターゲットミラーの位置座標を計測する。このデータは無線によって自動制御盤に送信される。

自動制御盤は、座標データおよびマシン本体の各種センサ値から位置決めの演算処理を行い、油圧シリンダ等を制御しながらオーガを目標位置にセットする。
② 削孔

セットが完了すると、オーガは回転・進捗を開始し、回転トルク・推進速度を制御しながら規定長まで削孔する。
③ 注入

削孔終了後、オーガの引抜速度に合わせてコンクリートの注入量を制御し、所定の長さのコンクリート壁をつくる。
4. 実証実験

実施工の環境下で本機の作業性と適応性を確認するために、以下のようにトンネル工事に導入し実証実験を行った。

工事名：東葉高速線・勝田台T（池上）工事
工事場所：千葉県八千代市
工事延長：153m
地質：トンネル被り部分は関東ローム層、掘削断面部分は成田砂層および洪積粘土層からなる未固結地山である。
工事の特色：路線に近接して閑静な住宅街が存在する。
土被りが4～7mと非常に浅い。

工事延長153mのうち、約110m区間を本機により大きなトラブルもなくまた、工程通り施工することができた。さらに、サイクルタイムおよび各種データの収集もできた。

施工状況を写真-1に示す。

写真-1

5. おわりに

本機はトンネル工事での試験施工を終え、極めて実用性の高い機械であることが確認された。
今後はこの実験結果をもとにさらに改良を加え、多くのトンネル施工への導入を進めていく所存である。