2．レーザー自動鉛直システム

大成建設㈱：仲野　孝一・*松本千緒

1．はじめに

従来、ビル等の建築物の施工をおこなうにあたっては、専門の測量技師が下げる振りや光学鉛直器を使用して鉛直度（建て方精度）の測定をおこなっていた。

しかし、下げる振りでは鉛直距離が長くなるにつれ、おもりや下げる振り用ワイヤーが大からなり、さらに風や振動などの影響により測定が困難となる場合も生じていた。また、光学鉛直器による方法では人間が見張る関係から測定できるのは階数にして4〜5階が限度であり、基準墨を盛り変えながら測定を進めるため誤差の累積に不安があった。特に、ビルの高さが高くなるほど上記の事項は深刻な課題となっており、これを解決する新たな測定方法が望まれていた。

本論文で述べるレーザー自動鉛直システムは上記のような課題の解決を目指したものであり、特に超高層ビルの鉛直度を短時間で高精度に測定する事を目的として開発したものである。

2．システムの概要

本システムは、鉛直用レーザー照準器、ターゲット板、画像処理装置、パソコンコンピュータ、通信装置などで構成される。これらの機器の概略配置を図-1に示す。レーザー照準器は地上側の基準墨上に設置し上層階に向かってレーザーを照射する。そして、上層側に設置したターゲット板でこのレーザーを受け、そのスポットを画像処理装置で解析する事により基準墨を上方にあけるものである。

通信装置は鉛直用レーザー照準器と画像処理装置とのデータ交換をおこなう為のものである。データとしては鉛直レーザーのセッティング信号や画像解析終了信号などの動作タイミング信号、機器のステータス信号などであり、状況に応じて有線や無線を使用している。

図-1
3. 測定方法

[鉛直レーザー側]

鉛直用レーザー照準基には自動的に水平回転および鉛直方向の照射角度が調整できる様にモータ制御機構を内蔵している。また、鉛直方向をセンシングするセンサーも内蔵しているため鉛直方向に4秒の精度でレーザー照射角を自動調整できる（但し、センサーの分解能は1〜2秒でありデジタル表示される）。しかし、レーザー発信器の機械的取付誤差があるため、本システムではレーザー照準基を90度ピッチで1回転させる方法を取りている。したがって、計測の1サイクル0度、90度、180度、270度と4点のスポットを画像処理し、その結果を解析して鉛直中心を決定している。
（但し、鉛直自動調整の結果、何度の角度に設定されたかは2秒以下の精度でデジタル値で出力出来るため、画像処理側に伝送し解析に応用している）

[画像処理側]

（鉛直中心計算）

鉛直中心の計算では、図-2に示す様に水平角0度と180度におけるレーザースポットの中点を通り、この2点を結ぶ線分に直行する直線が鉛直角90度と270度のレーザースポットから同様に得られる直線と交点を求める方法をとっている。

（4点計測）

鉛直レーザー側は水平角および鉛直角の自動調整を終了すると、画像処理装置に対して設定終了信号と角度データを伝送する。画像処理装置側では、このデータを受信後に画像入力操作を実行する。画像は1/60サイクルで約10秒間撮像する。この理由は、CCDカメラ、ターゲット板、鉛直レーザー、施工している建物などの揺れや振動によるレーザースポットのフレクスを取り除くためであり、1秒間に60回で10秒間、すなわち600枚の画像データを取り込み、幾何学的重心位置を算出する。この処理の終了後、画像処理装置から鉛直レーザー装置に対して解析終了信号が伝送され、鉛直レーザーは次の水平角度に回転を始める。そして、水平角270度までの4点の画像処理が終了したならば、今度は得られた4点のデータから鉛直中心決定のための計算に移る。

（ターゲット板撮影角度の補正処理）

本システムではターゲット板を垂直方向から撮像しても解析できるように、撮像画像の座標変換をおこなっている。その結果、CCDカメラは施工場所の状況によって任意の位置に設置する事が可能になった。ターゲット板にはこの座標変換を可能にするため、あらかじめ定めた距離をおいて4点のマーカーを取り付けています。また、測定対象面が平面であるため、座標の分かっている点が4点以上あれば2次元変換という方法で、直接から写した時と同じ状態に変換する事が可能である。

（変換式）

\[\begin{align*}
X &= (b_1x+b_2y+b_3)/(b_7x+b_8y+1) \\
Y &= (b_4x+b_5y+b_6)/(b_7x+b_8y+1)
\end{align*} \]

上式でx,yは撮影画像そのままの座標、X,Yは変換後の座標、b1〜b8は変換パラメータである。画像処理に先立ち、未知数b1〜b8は上式を線形の観測方程式に直し、最小2乗法を適用して求める。
4. 実施例

横浜みなとみらい21・25 街区に建設中のランドマークタワーにおいて実施した例を示す。（写真－1参照）

ここでの測定実験は本システムの動作や測定精度の検証をおこなうための実験と、ランドマークタワーの鉛直精度の測定をおこなう実験の2項目を目的としたために、中層階と上層階の2箇所にて測定実験をおこなった事とした。

また、実験場所は施工状況や測定環境を考慮した結果、中層階・上層階ともにエレベータシャフト部を利用して実験をおこなった。

（中層階での実験）

1バングル7番エレベータシャフトにて地下1階と29階との間、約120mでの鉛直度測定を本システムと下げ振り方式との両方でおこなった。下げ振りについては、振動や風などの影響がもっとも少ない時期を選んで実施し、本システムとの差が1mm以下という結果を得た。但し、本システムは鉛直距離120mの地点で約2．3mmの誤差があるため下げ振りとの差は本システムの誤差範囲内におさまっているものと判断される。

（上層階での実験）

展望室用100番エレベータのシャフトにて地下3階と67階との間約300mでの鉛直度測定をおこなった（写真－2）。

その結果、既に光学鉛直器にて上げていた基準墨との差は4mm以下である事がわかった。但し、本システムは鉛直距離300mにおいて約6mm程度と考えられるため、従来法（光学鉛直器）にて上げていた基準墨は本システムの誤差範囲内に入っているものと考えられる。なお、この実験では鉛直距離が長いため光通信で下部と上部のデータ転送をおこなった。
5. 実施結果について

ラントマークタワーにて地下3階から上層階まで鉛直距離約300mにて測定実験をおこなった時の測定画面の例を図-3に示す。画像計測は一つの水平角において約10秒間、600枚の画像を取り込み、その重心位置を求めている。図-3で黒い点が4箇所に集まっている様子が判別できる。この4箇所の黒点が水平角0、90、180、270度の位置のレーザースポットに対応した入力画像の結果である。この様にレーザースポットが一点に集中せず4箇所に分かれているのは、前述したレーザー発信器の取付け誤差の事由であると判断される。さらにその箇所ごとにこのスポットにもパラッキがあるのは建物の揺れや機器の微振動、レーザーの揺らぎ等が影響しているものと判断される。この時のターゲット板上に照射されたレーザースポットの直径は30mmから40mm程度であるが、揺らぎのため円形にはなっていない。そのため、画像入力の時点でスポット面積の重心位置を算出記録し、それらの入力画像600枚からさらに重心位置を求める方法を取っている。鉛直精度の測定実験は時間変えて数10回おこなったが、解析結果はいずれも基準値に対して誤差±4mm以下の範囲に入っていた。

6. 今後の課題

今回の開発と試行により、超高層ビルの鉛直度測定に対して本システムはたいへん有効なシステムであることが確認された。今後は、超高層ビルばかりでなく様々な建築物件に適用しながらシステムの完成度を高めていくと共に、鉛直測定だけではなく高層ビルの施工を高精度化、急速施工化する上での必要となる他の施工技術と連携させた総合的な施工管理システムとして、新技術を付加しながら発展させていく予定である。今回の開発と試行を通じて、現段階で改良もしくは開発が必要と判断される当面の課題は、

・レーザーの鉛直指示精度の向上
・システムの低価格化、コンパクト化
・システムの操作性の向上（簡易化）

などであり、これらの課題の検討を含めて上記の目標を進めていく予定である。