39. 低騒音型油圧プレーカの開発

建設省：杉山 篤・*山中 勇樹

1. まえがき

土木構造物、建築構造物の解体や、舗装版の打換えに、油圧ショベルに油圧プレーカを取り付けて使用する場合が多く、騒音規制法を含めた削岩機を使用する作業は、特定建設作業の1つに取り上げられ、騒音規制法で規制されている。削岩機を使用する作業、他の特定建設作業と比較しても非常に多くの騒音苦情が寄せられている。平成2年度騒音規制法施行状況調査によると特定建設作業の騒音苦情対応件数に占める削岩機の割合は70%である。このため、建設工事の騒音苦情を低減するためにも、立ち遅れている油圧プレーカの騒音を低減する必要がある。したがって、土木研究所機械研究室では平成2年度から4年計画で環境庁の予算により油圧プレーカの低騒音化を行っている。

表-1 建設作業騒音の苦情実態

<table>
<thead>
<tr>
<th>行列職能</th>
<th>定義件数</th>
<th>業務の規模</th>
<th>順番</th>
<th>行動機種</th>
<th>順番</th>
<th>行動機種</th>
<th>喜虎</th>
<th>行動機種</th>
<th>順番</th>
<th>行動機種</th>
</tr>
</thead>
<tbody>
<tr>
<td>削岩機</td>
<td>268</td>
<td>削岩機</td>
<td>73</td>
<td>削岩機</td>
<td>326</td>
<td>削岩機</td>
<td>56</td>
<td>削岩機</td>
<td>27</td>
<td>削岩機</td>
</tr>
<tr>
<td>削岩機</td>
<td>6</td>
<td>削岩機</td>
<td>4</td>
<td>削岩機</td>
<td>1</td>
<td>削岩機</td>
<td>0</td>
<td>削岩機</td>
<td>0</td>
<td>削岩機</td>
</tr>
<tr>
<td>削岩機</td>
<td>813</td>
<td>削岩機</td>
<td>104</td>
<td>削岩機</td>
<td>356</td>
<td>削岩機</td>
<td>141</td>
<td>削岩機</td>
<td>68</td>
<td>削岩機</td>
</tr>
<tr>
<td>削岩機</td>
<td>71</td>
<td>削岩機</td>
<td>27</td>
<td>削岩機</td>
<td>35</td>
<td>削岩機</td>
<td>24</td>
<td>削岩機</td>
<td>8</td>
<td>削岩機</td>
</tr>
<tr>
<td>削岩機</td>
<td>2</td>
<td>削岩機</td>
<td>0</td>
<td>削岩機</td>
<td>1</td>
<td>削岩機</td>
<td>0</td>
<td>削岩機</td>
<td>0</td>
<td>削岩機</td>
</tr>
<tr>
<td>小計</td>
<td>9,308</td>
<td>小計</td>
<td>243</td>
<td>小計</td>
<td>887</td>
<td>小計</td>
<td>355</td>
<td>小計</td>
<td>520</td>
<td>小計</td>
</tr>
</tbody>
</table>

注) 平成2年度 騒音規制法施行状況調査（環境庁大気保全局特殊公害課）より

2. 油圧プレーカの騒音発生の現状

2.1 対象油圧プレーカ

対象とする油圧プレーカは、油圧ショベル搭載型である。これは、構造物の解体、舗装版の打換え等で主に使用され需要が多いが、騒音対策が遅れており苦情が多いことから選定した。対象規格としては、需要が多い0.25m²クラスの油圧ショベルに搭載したタイプとした。（本体重量約200kg）

2.2 騒音測定方法

周囲騒音測定は、基本的には（社）日本建設機械化協会規格「建設機械の騒音レベル測定方法」に則り、7m、15m4方向の高さ1.5mにおいて、図-1に示す配置で行った。測定器の構成を図-2に示す。また、その状況を写真-1に示す。
図-1 周囲騒音測定点

油圧ブレーキの騒音対策を行うために、騒音源を調査する必要がある。その方法として、自動車産業、建築騒音の分野などで騒音源特定のため近年採用が多なくなっている音響インテンシティ法を用いた。この方法の特徴は、音源近傍における音の放射性状が直接ベクトル量として得られ、音源探査に利用できることである。

本研究では、近接した2個のマイクホンから得られた音圧と、その差分から近似的に得られる粒子速度との積の時間平均として求める方法（2マインクホン法）を用いた。測定点を図-3、測定計器を図-4、測定状況を写真-2に示す。

図-3 音響インテンシティ測定点
図-4 測定計器構成（インテンシティ測定）

2.3 測定結果
周囲騒音測定による打撃音の発生状況の波形（dB(A)）を図-5に示す。この波形は、衝撃的打撃が連続的に発生していることを示している。周囲騒音測定結果を、表-2に示す。

図-5 騒音レベルの記録波形

表-2 騒音レベル測定状況

<table>
<thead>
<tr>
<th>時間</th>
<th>騒音レベル</th>
<th>dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0秒</td>
<td>75</td>
<td>65</td>
</tr>
<tr>
<td>1秒</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>2秒</td>
<td>85</td>
<td>75</td>
</tr>
<tr>
<td>3秒</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>4秒</td>
<td>95</td>
<td>85</td>
</tr>
</tbody>
</table>

騒音レベルは、打撃時の真の音を計測して得る（測定方法です）
* 表-2は測定結果の一例であり、実際の値は調査によって異なります。
音響インテンシティ法による測定結果として全帯域における音の強さを表すコントラクト図を図-6に示す。傾向としては、プレーカ内部でチゼルが打撃されている辺り、側面ブラケット部の窪の辺り、チゼル部分を中心に、プレーカ本体の全体から音が放射されていることがわかる。

図-6 音響インテンシティ測定結果・コントラクト図（全体域）

3. 油圧プレーカの騒音低減対策
3-1 対策部品の試作
プレーカから放射される音を低減するためには、プレーカ表面から発散される音を遮断するとともにプレーカ本体振動を抑える必要がある。このため、プレーカ表面を制振材で囲み、さらに遮音効果を期待して鋼板（SS400）の防音カバーで覆い騒音低減の効果を調査した。

図-7 騒音低減対策部品の形状 写真-3 騒音対策前後の概観

3-2 測定結果
騒音低減対策前のケースと油圧プレーカを防音カバーのみで覆ったケースのバルブ状ロッドによるコンクリート版打撃による騒音を比較すると、騒音レベルで3dBと低減の効果が認められた。これは、油圧プレーカ表面から発せられる音が遮音された効果によるものと考えられる。

騒音低減対策前のケースと防音カバー及び制振材により騒音低減対策を講じたケースの周囲騒音測定結果を、表-3に示す。7m地点における騒音の平均値でバルブ状ロッドによるコンクリート版打撃は約5dB、ポイントチゼルによるコンクリート版打撃は約10dBと低減した。
ト版破砕は約7 dB、花こう岩破砕は約7 dB低減されている。
それぞれの騒音データを周波数分析した結果を、図-8に示す。結果から明らかのように、500 Hz以上で騒音が低減していることがわかる。
以上の調査結果から、以下のことが判明した。
① 防音カバーとその内側に制振材を併用することにより、5～7 dB程度の騒音低減が図れる。なお、防音カバーを単独で用いると、3 dB程度の騒音低減が図れた。
② 試作したロッドカバーはロッド（チゼル）の打撃が不安定な時に有効であり、ポイントチゼルによる打撃開始時にも騒音低減効果が期待できる。

表-3 騒音低減の効果

<table>
<thead>
<tr>
<th>ケース</th>
<th>打撃機材</th>
<th>鋼材</th>
<th>制振材</th>
<th>防音カバー</th>
<th>光の昇降</th>
<th>その他</th>
<th>騒音</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-16-1</td>
<td>バルブ式ロッドによる打撃</td>
<td>対策前</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
<td>7 m</td>
<td></td>
</tr>
<tr>
<td>T-16-1</td>
<td>バルブ式ロッドによる打撃</td>
<td>対策前</td>
<td>なし</td>
<td>ケレン</td>
<td>なし</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>T-16-1</td>
<td>コンクリート版破砕</td>
<td>対策前</td>
<td>なし</td>
<td>ケレン</td>
<td>なし</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>T-16-1</td>
<td>コンクリート版破砕</td>
<td>対策前</td>
<td>なし</td>
<td>ケレン</td>
<td>なし</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>T-16-1</td>
<td>花こう岩破砕</td>
<td>対策前</td>
<td>なし</td>
<td>ケレン</td>
<td>なし</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>T-16-1</td>
<td>花こう岩破砕</td>
<td>対策前</td>
<td>なし</td>
<td>ケレン</td>
<td>なし</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

ケースA-1：騒音低減対策前
ケースB-1：騒音低減対策後

図-8 周波数分析結果（コンクリート版破砕）

4. 今後の予定
今後は、実際の使用に耐える構造の検討及び作業性を損なわない、より一層の低騒音化に向けての改良が必要であると考える。このため、制振鋼板の利用、防音カバーの防振支持等の対策を行い、その効果及び試作品の耐久性調査を行う予定である。