60. 地下タンク側壁コンクリート自動打設システムの開発

清水建設㈱：塚原 裕一・田中 佳利
*鈴木 克男

I. はじめに

地下タンクの建設は、地盤を円筒形に掘削し、底盤と側壁にコンクリートを打設して、鉄筋コンクリート製の容器を構築するものである。（図 - 1, 2参照）

当社では地下タンク施工の生産性の向上を目指し、自動化・機械化を中心とした各種開発を実施している。

本文では、側壁構築に伴う『コンクリート打設工事』に使用される側壁コンクリート自動打設システムについて、東京ガス根岸工場の新設LNG地下タンクでの事例を述べる。

コンクリート打設工事はタンク全周を4つに分割し、鉄筋が組まれた型枠の中に、コンクリートの側圧を考慮し、1時間当たり50cm3の層厚でコンクリートを打上げ、パイプレーターで綿固める。1回の施工で高さ約8m、打設量約2500m3のコンクリートを打設し側壁を構築する。この連続の作業を毎月繰り返し側壁を完成させる。

従来これらの作業は、60人程度の作業員が人力により行なっており、高所、重労働等が伴う悪環境下での作業で、品質管理及び、生産性の向上も難しかった。

2. コンクリート自動打設システム
2-1. システムの構成と運用

自動打設システムは自動打設装置、綿固めロボット、打設管理システムの3種類のサブシステムで構成されている。
自動打設装置は側壁の型枠上にシャッタバルブ（以下バブルと呼ぶ）と地上部にバブル制御盤を設置して作業を行う。また締め固めロボットは掘削頂部からタンク内側に専用レールを設け、トロリーを介して、ゴンドラ方式で壁面に吊り下げて使用する。打設管理システムは打設状況をタンク上部で把握出来るように地上部に設置する。図-3にこれら3つのシステムの構成を示す。

2-2 自動打設装置

自動打設装置はバブルとバブル制御盤から構成されており、バブルは地上部からのエアコンプレッサからの空気圧によりエアーシリンダを駆動しながら閉閉を行う。コンクリートパイプは地上部に設置したコンクリートポンプ車から、壁面に沿って垂直に側壁の型枠上部に配管し、そこから円周方向（90度分）に水平にバブルを3～4m毎に10台取り付けて、これを全周分（4班）にわたって行う。

作業開始時には予め計画された打設高さ、打設層等の条件を制御盤において設定しコンクリートポンプに打設量計測用のセンサーを取り付ける。

コンクリートポンプ車からコンクリートが供給されると自動的にコンクリート量を計測し、設定された条件を満たされると打設作業が完了する。打設時のバブルの作業手順を図-4に示す。

2-3 締め固めロボット

ロボットは箱型の鋼製フレームの中に4本のバイプレータを搭載したものである。各ロボットはタンク外周の1/4区画ずつを施工範囲としており、約2m横行する毎に停止し、バイプレータをコンクリート中に挿入して締め固めを行う。締めを行うバイプレータは本体に搭載したウインチによりワイヤで吊られており、打設したコンクリート面に降下し、コンクリート内にバイプレータが挿入された
ことを検知し、所定の高さでパイプレータを停止させ一定の時間締めを行った後、元の位置に戻って1サイクルの締め作業を終了する。この一連の作業を繰り返し1層分の作業が終了する。本体の概要を図-5、作業状況を写真-1に示す。

2-4打設管理システム
システムはパーソナルコンピュータ（P C）とCRTおよびプリンタから構成されている。CRTには3つの画面が設定されており、タンク全体のコンクリートの打設状況、コンクリートの全体の打設量、4分割された各班の打設量、進捗状況を監理することができる。管理者はP Cの容易な操作だけで画面を切り換えてリアルタイムに現場の施工情報が得られ、計画通りの施工ができる。各班の管理情報は各班のパルプ制御盤の制御情報をP Cに入力してプログラム処理し、施工情報として出力している各画面の管理情報を図-6、7、8に示す。

2-5各システムによる作業の特徴
一連のコンクリート打設・締め作業の自動化により、従来60人程度必要であった作業員の数が1/4以下となり、省人化が図れる。
作業員が狭い型枠内での長時間にわたるコンクリートの締めめや、パイプレータの持ち運びなどの苦労作業から開放され作業環境の改善が図れる。
自動制御により正確なコンクリー
ト打設と適切な締固め作業が可能となり、高品質なコンクリートを構築できる。
・打設管理システムの画面をモニタするだけでコンクリート打設量が把握できるため計画通りに施工が行える。

３．おわりに
これらの各システムの導入により、従来人手に頼っていたコンクリート打設作業が自動化され、省人化、高品質の施工、安全性の向上が達成できた。各作業員はシステムの監視・操作作業が中心となり、従来の約１／３～１／４の作業員で作業を行っている。
今後、型枠の運搬・取付け等の作業についても、機械化・自動化を進め施工能率の向上に取り組んで行く予定である。
最後に、本システムの工事適用に際して、東京瓦斯株式会社関係各位の御協力に深く謝意を表します。