10. ディープ・パイプロフ工法と施工例

ハザマ：三原 正哉
日本海工業㈱：鶴岡 龍彦
青山機工㈱：末広 修三

ディープ・パイプロフ工法は、振動締固め工法の一種で、ロッド先端に取付けた大容量パイプレーター（パイプロフロッド）を用いて、地盤や供給される補給材を水平方向に振動締固めすることにより、軟弱な地盤を改良するものである。本工法は、他の振動締固め工法と比較して低振動・低騒音であること、周辺地盤の変状が小さいこと、施工機械がコンパクトであることなどの特長を有しており、特に都市部や既設構造物近傍での地盤改良に適している。

ディープ・パイプロフ方式に関しては、1980年10月に、海上組・日本海工業・青山機工の3社でディープ・パイプロフ工法研究会を設立し、実験工事を通じての改良開発を行ったとともに、実施工への展開を図ってきた。

本文では、ディープ・パイプロフ工法（以下、D・V工法と略す）の概要と、施工例について報告する。

2. ディープ・パイプロフ工法の概要

2.1 施工法

本工法は、密度の増大・有効応力の増大を原理とする砂質土の締固め工法の一つであるパイプロフロートーション工法に分類される工法である。改良目的としては、構築した地盤の地震時の液状化抵抗の増加、沈下量の低減、支持力の増加、などが期待される。

パイプロフロッドは、本工法の主体をなすものであり、詳細を図1に示す。起振方法は油圧モーター軸下部に装着された偏心ウェイトの回転によるもので、振動方向は水平方向である。また、パイプロフロッドの上部に接続された硬質のゴム管を取り付けたアイソレータと呼ばれる緩衝装置により、振動は上部ロッドに伝達せず、エネルギーの損失もなく、対象土層を直接かつ

表1 パイプロフロッドの諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>パイプロフロード工法 (日本国内)</th>
<th>ディープ・パイプロフ工法</th>
</tr>
</thead>
<tbody>
<tr>
<td>モータタイプ</td>
<td>151HP型</td>
<td>301HP型</td>
</tr>
<tr>
<td>電動機(kW)</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>回転数 (rpm)</td>
<td>1,420</td>
<td>1,420</td>
</tr>
<tr>
<td>起振力 (tf)</td>
<td>2.5</td>
<td>5.1</td>
</tr>
<tr>
<td>起振点幅 (mm)</td>
<td>4〜5</td>
<td>6〜7</td>
</tr>
<tr>
<td>丸 Manga (cm)</td>
<td>1.7</td>
<td>4.3</td>
</tr>
<tr>
<td>導入長 (m)</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>ゲージング径 (mm)</td>
<td>φ311</td>
<td>φ381</td>
</tr>
<tr>
<td>フィン径 (mm)</td>
<td>φ450</td>
<td>φ500</td>
</tr>
<tr>
<td>モータ取付け位置</td>
<td>本体上部</td>
<td>本体上部</td>
</tr>
<tr>
<td>組 造</td>
<td>一体式</td>
<td>単足式</td>
</tr>
</tbody>
</table>

文献1)を参照。加筆。
効果的に締め固めることが出来る。表-1は本工法のパイプロフロットと従来のものの諸元を比較したものであり、出力は5～10倍大きいことがわかる。

施工機械は、振動を発生するパイプロフロット、これを吊り下げるクレーン、エア設備（コンプレッサ）、パイプロフロットを起動する油圧パワーバック（H=180）、補給材を供給するトラクショベル、および深度・油圧を自動記録する施工管理計からなっている。図-2に、空気使用時の施工機械の構成例を示す。

施工法は、クレーンに吊り下げたパイプロフロットの上下動によって締め固めるものであり、図-3に施工手順を示す。補給材としては、砂、れきあるいはスラグが用いられる。補給材として使用する砂、細粒分含有率（7.5μm以下の含有率）が5%以下ものとしている。また碎石としては、φ20～40mm程度のものを使用することが多い。

施工管理に関しては、従来のパイプロフローテーション工法やロッドコンパクション工法と同様な考え方で行い、主な管理項目は、深度、補給材量、地表面沈下量であり、施工時には、改良深度～時間、油圧～時間の軌跡が自動記録される。また、改良後の品質管理としては、杭間で標準貫入試験を実施するのが通常である。

2.2 設計法

既に述べたように、本方式は、密度の増大・有効応力の増大を原理とする締固め工法の一つである。締固め工法は液状化対策工法の中でも実地震においてその効果が確認されて
いる数少ない工法であり、改良効果の確実性という面では信頼性が高い。

締固め工法の設計法は、現状では密度中心に考えられている。本方式も図-1のフローにそって打設ピッチを算定する。

なお、本方式の改良効果は、対象とする地盤条件（原地盤N値、細粒分含有率Fc、層厚、粘性土層の有無）などにより左右される度合いが大きい。そこで、改良仕様の決定にあたっては、試験施工を実施し、その結果に基づき決定することが望ましい。

砂の圧入率Vは、分担面積とm当りの補給砂量の比で表わされるものである。m当りの補給砂量Sは、地盤条件などによって異なるが、これまでの実績から、0.28～0.38m³/mの値が得られている。

3. 施工例

3.1 施工実績

研究会で実施した2件の実験施工を含めて、導入以来の施工実績は14件であり、タンク基礎地盤の改良、護岸後背の改良、建築構造物基礎地盤の改良等である。これらは全て液状化対策として実施したものであり、振動・騒音や地盤変状の問題から、本工法が採用された。

以下、施工例として、「タンク基礎」の改良工事について概要を示す。

3.2 「タンク基礎工事」

本工事は、稼働中のタンク群の中に新たに石油タンクを2基（1500t, 2000t）増設するにあたり、基礎地盤の液状化対策として実施したものである。

地盤は、砂を主体とした昭和40年代後半の埋立て地盤であり、埋立て後にはサンドドレーン工法、サンドコンプレッションバイル工法によって地盤改良がなされた。その後、表層2m程度は土壌や建物残土により盛土がなされた。タンクを新設するにあたり地盤調査を実施した結果、埋立て砂層部で「危険物の規制に関する規則」で定められている必要N値を満たさない部分があり、地盤改良を行うこととなった。

図-5に改良範囲の平面配置を示す。図に示されるように、改良範囲は直近のタンクとは5m程度しか離れていないこと、ポンプヤード（直接基礎で鉄鉛製配管があり、変形は許されない）が隣接していること、配管（スリーパーと呼ばれる直接基礎で支持されている）が改良範囲内にあることなど、地盤変形に対し非常に厳しい条件となっている。

図-5 改良範囲の平面配置
改良工事に先立ち、①改良効果の確認、②周辺地盤変状の調査、③振動・騒音のチェックの目的で試験工事を見なした。

試験工事は、埋立て時にサンドドレン工法とサンドコンパクションバイル工法が施工された二つのエリアで実施した。改良深度は9 m、改良ピッチはともに2.0 mの正方形配置、打設本数は1ケース16本であった。改良前後のN値の測定結果の一例を図-6に、規則に示されている目標N値と改良後N値との関係を図-7に示す。

試験工事より改良効果に問題がないこと、また試験工事前の地盤変形の測定結果から地盤変状についても確認がないことが示され、試験工事の結果をもとに、以下の仕様・諸元で改良工事を実施した。

- 施工法：ドライ方式（エア使用）
- 打設長：平均10 m、ただし、深度計・油圧計により粘土層への貫入を確認。
- 補給材：海砂、0.28 m³/m³以上
- 打設本数：431本

施工機は1台で、配管の破損などの問題もなく工事を終了した。施工状況を、写真-1に示す。

また、改良後杭間で標準貫入試験を実施し、規則に定められている細粒分含有率に対する目標N値を満足していることを確認した。

4. 周辺への影響

D.V工法の大きな特長は、従来の振動紡紡工法に比較して、低振動・低騒音、周辺地盤の変状が小さいことである。ここでは、これらに関してこれまでの施工実績から得られたデータを示す。

(1) 振動

D.V工法における振動の発生源はパイプロップロット先端の振動体部のまわりであり、前述したアイソレータの働きにより延長パイプ部に
は振動は伝達しない機構となっている。振動体の振動数は50Hzと在来工法に比較して高周波であり距離減衰が大きいことも特徴である。施工時の測定データを図-8に示す。また、図には比較のためS.C.P工法の例（土質工学会、軟弱地盤対策工法より引用）も示している。

図から判断すると、D.V.工法は、S.C.P工法と比較して10dB以上低振動な工法と言える。

(2) 騒音

D.V.工法における騒音の発生源は、油圧パワーサーブ、コンプレッサー、クローラクレーン、およびパイプロット先端からの空気の排気音である。パイプロット先端からの空気の排気音は、フロートが地中にある時は問題とならない。施工時の測定データを図-9に示す。振動の場合と同様に、S.C.P工法の例も比較のため示している。

図から判断すると、打設点付近では、S.C.P工法と同程度であるが、距離が離れると従いD.V.工法の方が小さくなっており、打設点から20m地点ではD.V.工法の方が約10dB小さい。

(3) 地盤変状

D.V.工法は、水平振動によって土粒子の配列を密に並び変え、空隙部に投入された補給材を締め固めるものであり、周辺地盤の地盤変状を全く生じさせないことは困難である。図-10に、これまでに測定した地中変位の測定結果を示す。これらのデータは全て、拡大型傾斜計を用いて測定したものである。

この図からみると、改良地帯で5m地点では地中変位は2cm以下で、10m離れると変位はほとんど生じていないことが分かる。また、データでは示していないが、同一地点でのS.C.P工法による測定データと比較すると、地中変位はD.V.工法の方が小さく、D.V.工法に比べて砂を強制的に押し出すS.C.P工法の5割程度以下となっている。
（4）近接構造物の変形

D. V. 工法は S. C. P. 工法に比較して地盤変状が小さいという特長を有しており、その特長をいかしてこれまで既設構造物近傍での施工を多く実施してきた。図-11は、これまでの施工のなかで測定した近接構造物の変位を示したものである。構造物には種々のものがあるが、水平・鉛直変位とも 5 mm 未満となっている。

5. あとがき

1989年10月に導入して以来、技術開発および現場適用を進めてきたディープ・バイプロ工法について、その概要と施工例を紹介した。

本工法については、低公害型液状化対策工法として運輸省の技術評価を申請し、平成4年9月には評価証の交付を受けたが、今後とも実績と技術開発を積み重ね、より合理的な技術の確立を目指していきたいと考えている。

最後に、開発・施工にあたり、御支援・御協力いただいた関係者の皆様にお礼申し上げます。

参考文献
1）田中誠一：3．地盤改良工法③バイプロフロー・テーション工法、基礎工、1976. 5
2）三原正哉：ディープ・バイプロ工法による地盤改良の設計・施工、軟弱地盤の改良③、1992