31. シールド機自動運転システム

三井建設㈱：井上 一敏・川原 啓一

1. はじめに
シールドは大口径化、大深度化、長距離化、高速化する傾向があり、施工は難しさが増大している。こうした環境に対応していくためには、運転操作の簡素化、無人化が必要となる。従来からシールド掘進機には、切羽安定を目的とした土圧制御システムが準備されているが、特に砂礫層施工においてはその応答性の鈍さから必ずしも良好な制御効果の得られない場合が多く問題の一つとなっていた。このような場合、試行錯誤を繰り返し、オペレータは数々と変化する諸条件に対し、その都度経験に基づく運転操作を行い難しい施工を成し遂げてきた。運転操作に関する自動化システムが未完成であった理由として、いつ何をよりどこを操作ををおこなっているか、ということに関して余りに多くのケースがあり、制御技術が及ばなかったことがあげられる。今回、進歩の著しいコンピュータ制御技術を利用し、地山条件に対する最適掘進方法を、基本理論と施工実績を対比し解析することによりプログラム化し、自動運転システムを構築した。

2. シールド自動運転システムの構成
シールドの自動運転のためには、操作の自動化が必要であるが、操作は起動、変動、調度に大別され、この中で調度操作の自動化が従来の制御機器では、応答性、入力数、演算、出力特性等に限りがあり、充分な制御結果を得ることが困難であった。自動運転システムの構成にあたっては、基本方針として、入出力を可能な限り短いループで制御可能とすること。プログラムは制御ロジックを明確にするため、可能な限り簡素化できること。制御が複数同時におこなえることを考慮しプログラムマクロコントローラを基本に、複雑な演算の必要な項目および、多数のデータ解析を必要とする項目に関してはパーソナルコンピュータを使用することとした。各コンピュータの機能分担を図1に示す。

3. システムの機能説明
3.－1 測量・方向制御
シールド掘進機に設置したジャイロの方位角、シールド傾斜角をリアルタイムに計測し、計画線との偏差を演算、グラフィック表示をおこない、偏差量を補正するジャッキパターンを出力する。

3.－2 運転制御
運転制御は、シーケンシャルスタートとストップ、自動土圧、自動速度、注入、補助制御機能を有している。
速度制御は、掘進開始時はスロースタートを行い、徐々に速度を上げ定常運転時には、シールドマシンの負荷状態を入力値として、過負荷となる速度を出力し掘進の停止を可能な限り回避する。
土圧制御は、速度制御出力に比例したスクリュコンペア回転数を基準値として、切羽土圧を保持するために回転数を制御する。制御動作は目標土圧をオーバする場合回転数を増加し、アンダーとなる
場合、回転数を落とす。

補助制御は、ゲートの開度調節、ロータリーフィーダー等その他の補助機能も土圧保持に影響を与える要素であることから制御対象とした。掘進方法の難易度別に制御優先順位をプログラム設定している。

注入制御は、掘進速度に見合った加液材・裏込め材の注入量を演算制御すると共に注入圧力を監視し、最適圧力で注入制御する。

3．データ解析システム

シールド掘進機の各部の負荷状態、注入量、圧力、排土量等の掘進管理に必要なデータを採録しトレンド表示する。排土量計測は、ロードセルを使用しベルトコンベア・ホッパー・ずり鋼車の重量を連続計量する。

自動運転システムのフローを図2に示す。

4．施工実績

当自動運転システムによる施工実績データを図3～図7に示す。

4．1 方向制御

泥土圧シールド掘削外径4180mmの方位角実績データを図3に、ピッチング実績データを図4に示す。ここでの偏差は掘進方向の指示値に対して、実際にシールドが通過した線形の方位角とピッチング角度の差をいい、セグメント長さ1000mmに対する偏差として表記している。

これを変位量に換算した場合の参考値は、\(\tan (1.0^\circ) \times 1000 = 17.5 \) (mm)である。

4．2 運転制御

図5 ジャッキ速度とスクリュ回転数の関係は、ジャッキ速度にスクリュ回転が比例関係にあり制御動作が理論どおりである。

図6 ジャッキ速度と土圧の関係は、ジャッキ速度の全域において土圧を一定値に保持している。

図7 ジャッキ速度とカッタートルクの関係は、カッタートルクを油圧系統の上限値170kg/cm2以下としている。

これらのことから自動運転システムは調整操作を有効に行っていると評価できる。

5．まとめ

コンピュータを利用した制御は、従来の操作方法の解析により、自動化の適用範囲を拡大すると同時に、実績の積み重ねはシステムをより強力なものとする。制御の信頼性が確実なものになれば、その部分はブラックボックス化することが可能となり、一層の自動化、無人化を促進できるものと考えられること。このシステムの効果の一例として、シールドの運転はスタートスイッチを押すだけで掘削するが排土されることから、バッテリー機関車の運転がベルコンの下でずり積み込みOKの確認をこなし、スタートボタンを押せば、シールド掘進作業が開始され、ずりが自動的に排土され、ずりの積み込みが終了した時点で終了ボタンを押すだけの作業となることがあげられる。操作の簡略化は、操作ミスの低減にもつながるものである。
図1 コンピュータ機能分担図

図2 自動運転システムフロー
図3 方位角偏差

図4 ピッチング偏差

図5 ジャッキ速度とスクリュ回転数

図6 ジャッキ速度と土圧

図7 ジャッキ速度とカッター負荷

参考写真 プログラムマップコントローラ
シールド運転操作盤