14. シールド総合管理システムの開発と適用

清水建設㈱：菊池 雄一・後藤 徹

*藤井 攻

1.はじめに

現在のシールド工事のように各設備の自動化・機械化が進んでくると認識する情報量は膨大になり従来の個別システムでの対応では制御の遅れや誤操作、異常発見の遅れが生じてしまう。このような弊害を回避するために各種情報を統合と制御の集約化を実現させることが必要不可欠になってきている。

シールド総合管理システムとは、全てのシステムをパソコン間のネットワークで結び統括管理することによつてこれまで個別に行われていた各設備の操作・監視を1つのシステムにまとめることにより、情報の一元化と操作の集約化を可能とし、施工管理の高度化をめざしたシステムである。

(図-1)

2.システム構成

2.1ハードウェア構成

本システムは処理装置としてのパーソナルコンピュータ（PC）、各設備（シールドマシン、泥水輸送、泥水処理、裏込め装置、セグメント自動搬送システム、自動労務管理システム、ガス検知システム）のシーケンサ（PLC）と総合管理システムのPCを接続するためのイーサネット用拡張ボード、イーサネットに対応していないPLCに対してのRS-232C用拡張ボード、LANシステムを構築するためのハブ、電話回線を使用して外部端末から情報監視するためのモデムから構成されている。図-2にシステムの構成例を示す。

図-1 システム概念図
2.2 ソフトウェア構成
システムを構成するソフトとしてはwindows上で動作するリアルタイム監視・制御画面作成ソフトを使用した。これは大きく分けて監視・操作用モジュールと画面作成用モジュールから構成されている。通常は監視・操作用モジュールを使用し、画面の修正・変更時は画面作成用モジュールを使用する。ソフトウェアの構成は図-3のようになる。

2.3 画面構成
画面構成はメイン画面を中心に、通常の監視管理に必要な最低限の情報をここに集約させている。このメイン画面の下に各設備の操作・監視画面を作り、設備の詳細情報を知りたい場合には画面を切り替え情報が得る。さらに設備ごとに警報画面を設けて、ここでの異常や故障の詳細を知ることが可能である。常時監視しているメイン画面では設備ごとの警報を表示している。

3. システム適用の結果
3.1 情報の一元管理
掲示開始時刻、終了時刻、リングナンバー等これまで各設備でそれぞれ管理していたため、違いが生じていたが本システムではこれらの情報を定義し、統一した。それにより従来のような設備間の複雑なデータ交換の必要がなくなりデータの共有化が簡単に行えるようになった。
3.2 システムの簡素化、汎用性の向上
従来の設備ごとのシーケンスロジックはそのまま使用し各設備のマンマシンインターフェイス（MMI）を構築することにより各設備の操作監視を行った。これにより、煩雑な処理を省くことができ、システムの簡素化が可能となった。また、市販のソフトウェアを使用することにより大幅な開発費の低減、システム構築の時間短縮が可能となり、汎用性という面でも柔軟なシステムになった。（図-4）

3.3 データ転送の高速化
データ転送にはイーサネット（10Mbps）を使用し、PCとPLCを直接イーサネットで結ぶことにより、伝送速度が応答速度の向上を計った。応答速度に関してはシステムを例とすると、扱うデータ数がアナログ信号約240点（1点16ビット）、接点信号约1000点で1秒前後に十分実用に耐えるものであった。

3.4 音声による警報
故障信号や各種情報（送排泥流量、送排泥圧力、切羽水圧、注入流量、注入圧力、調整槽比重、受槽水位など）に上下限値や重要度を設定し、これを越えた場合に異常をみなし、画面表示とともに音声警報によって操作員に知らせるため、異常の早期発見と迅速な対応ができるようになった。

3.5 遠隔監視
PCにモニタをつなぎNTT回線（デジタル回線）を使うことにより本社端末から各設備の稼働状況がわかるようになった。今回は安全性（誤操作による設備の運転）や情報量を考えて、工事の流れが把握できる程度の情報をビックアップして端末から監視することにした。
今後は端末からの掘進データの取り込みや入坑管理用登録データファイルの変更などが行えるように考えている。

4.適用事例
4.1工事概要
以下に、本システムを導入した工事の概要を示す。（表-1）

<table>
<thead>
<tr>
<th>工事名</th>
<th>工法</th>
<th>掘削距離</th>
<th>土被り</th>
<th>掘削外径</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京ガス</td>
<td>泥水式</td>
<td>1448m</td>
<td>26～56m</td>
<td>9080mm</td>
</tr>
<tr>
<td>青島シールド</td>
<td>泥水式</td>
<td>900m</td>
<td>平均15m</td>
<td>14140mm</td>
</tr>
</tbody>
</table>

4.2掘進管理状況
例として東京湾横断道路の中央管理室の写真と操作画面の一部を示す。（写真-1、2）
東京湾横断道路では総合管理用モニターとして40インチプロジェクト4台、坑内監視用モニターとして29インチモニター6台を使用してガス検知、掘削量管理、自動方向制御、組立ロボット監視、入坑管理、セグメント搬送も同時に監視している。
両現場に共通して発生した問題としては3.2で述べた考えのシステム構築のため，通常の運転には支障ないが，初期調整時，トラブル発生時に一部対応できない場合（油圧ポンプ，バルブの開閉などの個別操作）が生じたことである。これはシステム構成上やむを得ないと，今後これらについても検討，対処する必要がある。
2.現場で行った改善点は次のようしたことである。
①通信速度の向上
総合管理専用のアドレスを各設備に用意し，データを読み書きするアドレスを1カ所に集めた。これによりデータ転送の回数を減らす事ができ，通信速度が向上した。
②データ取り扱いの統一
アナログデータは必要のない限り各設備でリマスターをかけてもらい，分割数0～4000で取り扱い設定値（ジャッキ速度，テールシーラー打ち込み時間）などはパルス数やパルス長で判断するのではなく，数値データで扱うようにした。
5.今後の課題
本システムのこれからの課題としては次のようなことが挙げられる。
5.1収集データの管理，保存
現在のシステムはwindows上で動作するソフトを使用しておりデータの収集，変換も容易である。今後このデータを掘進状況の分析，材料管理，データの変換，グラフ作成など広い範囲でデータを活用できるようにし，シールド計画の貴重な資料として利用できるようにしたい。
5.2システムの標準化
今後，このシステムを多くの現場に導入するためには設備ごとに共通するデータと固有のデータに分け，データをグループ化し，操作方法や数値設定なども統一してシステムの標準化を目指す必要がある。
6.おわりに
本システムの導入によりシールド工事の全体的な状況監視，及び操作ができることが実証できた。今後はこのシステムをさらに操作性の良いものにし，コストダウンをすすめて多くの現場に適用していきたい。
最後に本システムの開発に協力していただいた応用技術開発ならびに現場適用に御協力をいただいた関係者の皆様に深く感謝いたします。