34. ジャンボ搭載型ケーブルボルト
自動セッターの開発

清水建設㈱：*小野　啓二、宮沢　和夫、今津　雅紀

1. はじめに

最近、山岳トンネルや地下空洞の施工において、4mを超える長尺の岩盤補強材料を打設する場合、従来使用されている異形棒鋼製のロックボルトでは縫ぎ足し手間がかかるため、リールから引き出すだけで所定の打設長を確保できるケーブルボルトが採用され始めている。これまでのケーブルボルトの打設作業は、狭い切羽付近で発破作業と交互に行うため、専用打設機と発破孔を削孔するジャンボの位置をその都度入れ替えならばず、作業の手持ちが発生するのが現状であった。専用打設機とジャンボは、ドリルなどの重複する機能を備えていることから、一体化が求められており、今回の開発につながった。

ジャンボ搭載型ケーブルボルト自動セッターの開発は、平成6年度から4年間かけて行った。基本仕様の設定、要素技術の調査および概念設計を経て、自動セッターをガイドシールに沿わせる形で取り付けたプロトタイプでの実験を行った。その後、ガイドシールと定着装置を分離し、チャージングケージの下に自動セッターを取り付ける形に変更して、機能の確認を行った。最終年度には、機械的な各機能の要素実験および改良を経て、岐阜県の神岡鉱山において総合的な実証実験を行い、実機設計を終えてい

2. ジャンボ搭載型ケーブルボルト自動セッターの開発目的および基本仕様

ジャンボ搭載型ケーブルボルト自動セッターは、掘削工程のうちロックボルト打設工の機械化・自動化を図るもので、以下の項目を開発のねらいとした。

①ケーブルボルトを採用し機械化・自動化により、人力施工箇所を少なくすること
②切羽削孔とケーブルボルト打設の並行作業を可能にし、掘削サイクル時間の低減を図ること
③自動化することにより、作業時の安全性を向上する安全性の向上を図ること

ジャンボ搭載型ケーブルボルト自動セッターの仕様を下記に主な装置の能力を表-1に示す。

①ケーブルボルト定着装置：モルタルホース、カッター、セッター部からなり、セッター部は回転式でモルタル充填とケーブルボルト挿入の切替えが容易となっている。モルタルクリップ（落下防止具）装置装置は、単発型の自動取付けタイプとし、洗浄装置は、先端部に設けモルタルホース引き抜き時に洗浄できるようになった。

②チャージングケージ：セッターのコントロールを行う場で、目前での打設が可能でありケージスイング付きとし、微妙な位置調整を可能にした。切羽作業時は、セッターを下部に格納して前面を広くフロアとして使用が可能である。
③モルタル関係装置：モルタルホースフィードは、推力確保のためブッシュフル方式にし、ブッシュ側はゴムボール、フル側は鉄製のローラ方式とした。ジャンボ後方にはモルタルポンプを搭載している。

④ケーブル挿入装置：ケーブルフィードは所定の推力を確保し、高能力の切断カッターを設備し、長さの表示・測定記録装置をつけた。

⑤その他：ケーブルガイドホースはケーブルに引っ掛かりが生じないようにフレキシブルチューブにしたもの。また、ケーブルの格納長さは1,000mにした。

3. ジャンボ搭載型ケーブルボルト自動セッターの特徴

ボルト打設作業状況を図-1に示すように、ジャンボ搭載型ケーブルボルト自動セッターは、ジャンボ前部のチャージングケージ部にケーブルボルトの自動打設装置を、中央部にケーブルボルトとモルタルホースを供給するフードを、後部にケーブルボルトとモルタルホースを収納するリール並びにモルタルポンプを搭載した形になっている。

今回、開発したジャンボ搭載型ケーブルボルト自動セッターは、ボルト孔の穿孔からボルト打設まで連続して行い、重機械の入れ替え無しで施工でき、施工効率の向上・コストダウンに大いに寄与すると考え図-1 ジャンボ搭載型ケーブルボルト自動セッター

ジャンボ搭載型ケーブルボルト自動セッターの特徴は、

①切羽削孔とボルト打設を兼用するので、重機の入れ替えがなく施工効率が高い。

②カセット式ケーブルリール（長さ1000m）を装備しているため、長尺ケーブルボルトの打設が可能である。

③ケーブルボルトが掲削孔のセンターに定着するよう、落下防止具を自動着装できる機構とした。

④ケーブルボルトとモルタルホースの挿入長の検尺・記録装置付きとした。

⑤施工工程を自動化するので、大幅な省力化や安全性の向上が図れる。

⑥ケーブルボルト長さの確認やモルタル充填が明確にできるので、品質の確保が十分にできる。

⑦機能は切羽削孔用ジャンボの付加設備とし、比較的簡単に打設装置の取り外しが出来る構造とした。

<table>
<thead>
<tr>
<th>装置名</th>
<th>能力*</th>
</tr>
</thead>
<tbody>
<tr>
<td>モルタルフィード</td>
<td>作動油圧80kgf/cm²、送り速度0~19m/min</td>
</tr>
<tr>
<td>ケーブルフィード</td>
<td>作動油圧100kgf/cm²、送り速度6~30m/min</td>
</tr>
<tr>
<td>モルタルリール</td>
<td>巻取り数15kg·m、最大巻取長20m</td>
</tr>
<tr>
<td>ケーブルボルト</td>
<td>ケーブル長1000m、巻取重量1,362kg</td>
</tr>
</tbody>
</table>

*は油圧モータ駆動
4. ジャンボ搭載型ケーブルボルト自動セッターでの施工手順

施工手順は、最初に、ドリルを操作してケーブルボルトの挿入孔を削孔する。次に、自動打設装置を
操作して、モルタルホースを挿入孔の最深部まで挿入、続いてモルタルを充填しながらホースを抜き取
り、最後にケーブルボルトを挿入し、切断するものである。ケーブルボルトの打設状況およびケーブル
ボルト切断時の状況写真を写真 - 1、写真 - 2に示す。

写真 - 1 ケーブルボルト打設状況

また、ケーブルボルト打設作業時以外は、写真 - 3のようにセッターをチャージングゲージの下方に
格納させ、その他の作業に支障のないようにそして
フロアを広く使えるように工夫している。

写真 - 2 ケーブルボルト切断・設置状況

写真 - 3 ジャンボ通常作業状況

5. ケーブルボルトについて

先にも記述したとおり、ケーブルボルト（PC鋼より線）はフレキシブルで、狭い施工スペースから
の施工が可能であることから、大断面トンネルや地下空洞における先行支保・事前補強やロックボルト
の代替として期待されている。しかし、ロックボルトと比較してボルト／グラウト間の付着強度が非常
に小さいとの課題がある。海外では付着強度を増加させるために多種類のケーブルボルトが提案され、
使用されている。しかし、大きな穿孔径が必要であったり、連続リールとして搬入できない、自動打設
機の使用が難しい等の短所がある。そのため、付着強度の増加を目的としたPC鋼にインデント（凹）
を施したPC鋼より線（STケーブルボルト）を開発し、ジャンボ搭載型ケーブルボルト自動セッター
とともにさらに、品質・施工効率の向上につとめている。このケーブルボルトの特長は

①従来のPC鋼より線ケーブルボルトに比べ付着強度が 4 倍と飛躍的に増大させたことにより、岩盤
補強に信頼性の向上がはかれる。
②コストダウンはいかれる。
③インデント加工で付着力を増加させているので定着長や本数を減らすことが可能である。
図-2にインデント付きケーブルボルトの概略図を示す。

図-2 インデント付ケーブルボルト（STケーブルボルト）

6. おわりに
大断面トンネルや地下空洞掘削工事など、拡幅掘削を念頭においた事前の地山補強を行う必要性のあるトンネルにおいては、導坑などからトンネル径よりも長い長尺なケーブルボルトを打設する工法の確立が望まれており、今回のジャンボ搭載型ケーブルボルト自動セッターの開発につながった。この機械の開発により、施工効率・安全性の向上めどとより、機械購入費用の削減や長尺ケーブルボルトの自動打設が可能となった。

今後は、今回の機械の開発・実証実験の成果を踏まえて、一日も早く現場への適用を図り、実機製作時にはロッドの自動継ぎ・取り外し機構を搭載したものとした上で、膨張性地山を含めた多種多様な地質の山岳トンネルや法面補強工に対してケーブルボルトの効率的な施工ができるよう普及を図っていきたい。