16. Ts-up工法（高層鉄塔施工システム）

大成建設㈱：*吉川 明男, 西村 正宏
伊藤 幸次

1. はじめに

近年、膨大な情報伝達をつかさどるマイクロウェーブ通信の中継所として、アンテナ設備を屋上に
備えた高層オフィスビルが増えている。

このようなアンテナ設備設置用の高層鉄塔を、従来のように狭い吊り足場と水平ネットを用いて施
工した場合、超高層エリアであるため工事は風の影響を受けやすく、溶接などの施工品質の低下、工
程の遅延などが懸念される。また、安定した作業環境が確保できないため鉄骨の建方精度の確保が難
しいと予想される。

これらの問題を解決するために鉄塔の周りに作業ステージを配置し、工事の進捗に合わせてその作
業ステージを昇降させ、高層鉄塔を建設する「Ts-Up工法」(写真1)を開発し工事に適用した。Ts-Up工法
の「T」は「Taisei（大成建設）」と「Tower（塔状構造物）」、「s」は「stage（作業ステージ）」
と「safe（安全）」を表し、「Up」は「上昇」の意である。本工法の適用により、超高層エリアの施
工においても、安全に効率よく、高い施工品質を保ちながら鉄塔建設を進めることができる。

本報では、本工法を適用した工事の紹介を行ない、工法の概要とシステムを構成する技術を説明し、
最後に工事への適用結果を報告する。

2. 適用工事の概要

本工法を適用した鉄塔は、横浜市みなとみらい
い地区の高層オフィスビル横浜MMタワー（高さ約105 m）の屋上に建設された通信用アンテ
ナ設備設置用の高層鉄塔（高さ約148 m）（図1）である。

鉄塔の構造は鉄骨造のプレース付きラーメン
構造である。塔体の基本平面ブランクは、2 スパ
ン × 3 スパンである（図2）。鉄塔の上層部分に
は塔体から5.5m 追加出したプラットホーム
（アンテナ設置床面）を5層有する（図1、3）。
全ての鉄骨部材は防錆のため、溶融亜鉛メッキ
処理されており、現場溶接部は亜鉛-アルミ溶射
処理を施す。表1に高層鉄塔の建築概要を示す。

写真1 Ts-Up工法外観
3. Ts-Up工法の概要

Ts-Up工法は、主にセルフクライム式に昇降する「ステージシステム」、鉄骨建方手順を工夫した「施工方法」、および鉄骨の銅直性を管理するための「計測システム」により構成される。以下に各システムの説明を記す。

3.1 ステージシステム

ステージシステムは、「外周作業ステージ」、「昇降システム」と「インナーステージ」で構成される。ステージシステムの概念図を図4に示す。このステージシステムを採用することにより、作業員は、超高層エリアの施工であるにもかかわらず、その高さを意識することなく、作業を進めることができる。
3.1.1 外周作業ステージ

外周作業ステージは工事の進捗に合わせて昇降システムにより昇降し、鉄塔外周の作業のための、安全で安定した作業床を提供する。

外周作業ステージは、「上段ステージ」、「下段ステージ」と上段ステージ上の「外周足場」の3層構造である。表2に示すように外周作業ステージ上の作業は3層に分割し、混在作業を無くした。これにより複数の作業を同時に行うことができ、効率的な施工が可能になる。

作業場所への風の吹き込みを防ぐため、外周作業ステージはメッシュシートで覆われているので、作業の安全性と溶接・溶射の施工品質を保つことができる。

外周作業ステージには作業に必要な溶接機や溶射機、昇降システムの油圧機関類を搭載してある。外周作業ステージの骨組み重量は約40tであり、搭載している資機材と外周足場を含めると全体重量は約80tである。

3.1.2 昇降システム

外周作業ステージを昇降させるための昇降システムはセンターホールタイプの「油圧ジャッキ」と節付きの鋼棒「ステップロッド」とで構成される（写真2）。表3に油圧ジャッキとステップロッドの仕様を示す。

今回の適用工事では、外周作業ステージを昇降させるための油圧ジャッキを、図4に示すように鉄塔の四隅の柱の外側、上段ステージ梁下に固定した。ステップロッドは、鉄塔の四隅の柱の外側に本体ビル屋上の本設架から立ち上げ、油圧ジャッキを貫通して上段ステージまで通っている。油圧ジャッキはステップロッドに沿って移動し、外周作業ステージを昇降させる。

<table>
<thead>
<tr>
<th>表2 外周作業ステージ内の作業区分</th>
</tr>
</thead>
<tbody>
<tr>
<td>ステージ</td>
</tr>
<tr>
<td>外周足場</td>
</tr>
<tr>
<td>上段ステージ</td>
</tr>
<tr>
<td>下段ステージ</td>
</tr>
</tbody>
</table>
写真-2 油圧ジャッキとステップロッド

表-3 油圧ジャッキとステップロッドの仕様

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>油圧ジャッキ</td>
<td>最大出力 75 ton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>最高圧力 170 kg/cm²</td>
<td></td>
</tr>
<tr>
<td>ステップロッド</td>
<td>最大径 85 φ mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>最小径 52 φ mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>材質 SCM435</td>
<td></td>
</tr>
</tbody>
</table>

図-5 昇降システムの上昇手順

この昇降システムは、油圧ジャッキを任意の高さで停止・固定させることができるので、外周作業ステージを、作業を行うのに最も適した位置に設置することが可能である。

外周作業ステージ全重量は、4本のステップロッドの軸力をとして鉄塔基部の鉄骨まで伝えられる。各々のステップロッドは約 1300 mm 間隔でロッドキャッチャーにより鉄塔の四隅の柱と固定されている。これによりステップロッドは軸外方向を規制されると共に、ステップロッドが曲げることを防いでいる。図5に昇降システムの上昇手順を示す。

3.1.3 インナーステージ

鉄塔内部の作業用のインナーステージは、作業床を6段持つ「ユニット足場」で構成される。今回の場合では、図4に示すようにユニット足場を24基使用した。

柱の溶接と溶射作業を安全にかつ連続して施工するために、ユニット足場の3・6段目と、上・下ステージとを可動式の渡り床で連結し、柱全周を回る作業床を構成する（図4）。個々のユニット足場の盛替えはタワークレーンで行う。

3.2 施工方法

ステージシステム上昇時に、塔体を1層ずつ施工し、下降時にブラットホームを施工をする方法を採用した。下降開始前に外周足場を撤去し、上段ステージ上をブラットな状態にし、この床面上でブラットホームを安全に施工する。図6に施工方法を示す。
3.3 計測システム

鉄塔の精度管理に関しては、ビル屋上に設けた基準位置から高精度（1/20000）の鉛直レーザ発振機で鉛直にレーザ光を発振し、そのレーザ光を上段ステージ上で受光して外周作業ステージの正確な位置を求める方式を採用した。受光には画像処理装置を用い、光が描かれた建物が捉えても正確に中心を把握できるようになっている（図7）。求めた外周作業ステージの位置を基に各鉄骨柱の建入れ調整を行い、精度よく鉄塔を建設する。

4. Ts-Up工法の適用結果
4.1 基本サイクル

ステージシステム上昇時、塔体の施工は3層にわたって複数の作業を同時に進めていく。今回適用した工事では、1層を7日サイクルで施工する計画を立案した。図8に基本層（N層）の施工サイクルを示す。
4.2 全体工程
工事は、平成10年10月より開始した。鉄塔の2層目までを在来工法で建設した後、ステージシステムを本体ビル屋上に設置した。3層目からは、ステージシステムを上昇させながら塔体の施工を進め（写真-3）。平成11年5月中旬に頂部小塔を含めて塔体が上棟した。その後、プラットホームを取り付けながら、本体ビル屋上までステージシステムを下降させ、7月下旬に本システムを屋上より撤去した。本工法の運用期間は約9ヶ月間であった。その後、タワークレーンを最上部からクライムダウンさせて、屋上で解体・撤去し、工事を完了した。図9に鉄塔建設工事の全体工程表を示す。

4.3 Ts-Up工法の導入による効果
以下に本工法を導入したことにより得られた効果をまとめめる。
・ステージシステムにより、安定した作業足場を提供でき、超高層エリアにおける施工にもかかわらず、安全に工事を進めることができた。
・同じ環境の中での繰り返し作業としたことにより、習慣による作業効率の向上があった。習熟後は、計画よりも1日短縮した6日サイクルで施工が進み、工事全体の工期短縮ができた。
・安定した作業床があるので、施工監理者や元請け仕事者に施工場所に容易に行くことができ、十分な施工管理のと、高い施工品質が確保できた。
・高精度レーザー測定装置を用いた計測システムにより、高い精度で鉄塔を建設できた。
・外周がメッシュシートで覆われているため、ステージシステムに外部への風に影響されない工場環境が得られ、溶接と溶射作業において高い品質の施工ができ、また強風による作業不能日を減らすことができ、工期の遅延を防ぐことができた。

5. まとめ
本工法は鉄塔の階層が多いほど導入効果が大きいが、今後は物件数が多い中規模の鉄塔に対しての適用のリファインと適用検討を行いたい。
今後の計画において、プラットホーム施工に続いてアンテナ設置工事も行なうようにすれば、アンテナを含む鉄塔全体の建設コストを低減することができ、また全体工期を短縮することができるので、アンテナ設置工事も本工法の所掌範囲に取り込むたいと考えている。