28. 制動装置付セグメント台車システム

鯨鯨池組： 綿田 正美、日置 昌治
*寺崎 修司

1. はじめに

都市の地下には、地下鉄・上下水道・電力電話線・ガス管等が複雑に交差しているため、シールドトンネル工事も勾配部や曲線部が多く、特に最近では急勾配工事が増加している。これらのシールドトンネル工事において、発進立坑からシールドマシンまでのセグメントの坑内搬送（架設方式）は、一般的にセグメント台車を連結したパッテリー機関車で行われている。通常、セグメント搬入時においてセグメント台車は、シールドマシンのセグメント組立装置への取り込みの関係から先頭（シールドマシン側）に連結され、機関車が後押しつける編成となっている。このため、下り勾配のシールド工事では、車輪の連結ピンを間違えたり、不完全な連結であった場合、セグメント台車がシールドマシン方向へ逸走し、重大な事故につながる危険性があった。そこで、逸走したセグメント台車を安全に制動停止させ、事故を未然に防ぐことが可能な制動装置付セグメント台車システムを開発した。

2. システムの概要

本システムは、軌条間の所定位置に、ある一定距離で永久磁石を設置し、その距離でパッテリー機関車とセグメント台車に取り付けられた磁気センサが所定位置を通過する時、同時に磁石を検知すれば正常連結であると判断し、同時に検知しなければ連結がされていない状態と判断して、パッテリー機関車に取り付けられている制御盤のブザー、表示ランプでパッテリー機関車運転手に「連結確認指示」の警報を発する。セグメント台車に装備されているフラッシュライトが警報と同時に点滅し、前方にいる人間と運転手にセグメント台車位置を知らせて運転手が目視確認を行い、逸走状態なら無線装置を使ってセグメント台車の制動装置を作動させて停止させるシステムである。図-1にシステム構成図を示す。

図-1 システム構成図
制動装置付セグメント台車システムの構成要素は、セグメント台車側に無線機、制御盤、油圧ディスクブレーキ、アキュムレータ、フラッシュライト、ブザー、バッテリー、磁気センサ等が装備され、機関車側には、無線機、制御盤（警報表示用）、ブザー、磁気センサ等が装備されている。表-1に仕様、図-2にセグメント台車全体図、写真-1にセグメント台車を示す。

表-1 仕様

<table>
<thead>
<tr>
<th>台車重量</th>
<th>1.800kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>積載重量</td>
<td>約7,300kg(セグメント台車+ビース分)</td>
</tr>
<tr>
<td>ブレーキ構造</td>
<td>油圧ディスクブレーキ(負荷作動型)</td>
</tr>
<tr>
<td>ブレーキディスク外径</td>
<td>ø 260mm</td>
</tr>
<tr>
<td>車軸寸法</td>
<td>ø 300mm</td>
</tr>
<tr>
<td>台車寸法</td>
<td>w1200mm × l3,150mm × h419mm</td>
</tr>
<tr>
<td>ブレーキ動作圧</td>
<td>アキュムレータ 容量15000G</td>
</tr>
<tr>
<td>制御系源電源</td>
<td>鍋蓋電池 12V×2個 Q=50Ah(8時間率)</td>
</tr>
<tr>
<td>無線装置（台車、機関車）</td>
<td>各1台(送受信共用)</td>
</tr>
</tbody>
</table>

図-3に制御フロー図を示す。また、警報機能として下記を備えている。

1) 油圧回路の圧力が警報・下限値レベルになったとき警報を発する。

2) 回路の電圧が警報・下限値レベルになったとき警報を発する。

3) バッテリー機関車～セグメント台車間の無線通信が遠距離、無線機の故障などにより通信不良になったとき警報が発せられ、セグメント台車は自動停止する。
3. 性能試験
1) 制動試験
図-4に示すテストコース（5%勾配部）を使用して実負荷による制動試験を実施した。試験の実施方法としては、50mのコースを10m毎に区切り、頂部から10mの位置でセグメント台車を切り離して逸走させた。コース上に連結検知用の永久磁石を20m及び30m地点に配置しておき、セグメント台車が永久磁石を検知するとブレーキを動作させる制動試験を行った。試験荷重と台車の編成を表-2のように変更しながら、以下のデータを各3回ずつ採取した。
①20、30m地点の手前2.5m区間の通過速度
②制動距離

<table>
<thead>
<tr>
<th>表-2 実験項目</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

写真-2は、セグメント台車にウエイト4.7tを積載した状況、写真-3は、積載時の制動試験状況を示す。
2）制動試験結果

図－5は、セグメント台車単独の制動試験結果でセグメント台車にウエイト4.7t（セグメント2ピース分）を積載させた状態で区間－1、区間－2を逸走させてから制動した試験結果を、セグメント台車にウエイト7.5t（セグメント3ピース分）を積載させた状態で区間－1を逸走させてから制動した試験結果を示す。

この結果よりセグメント台車＋ウエイト4.7t時では走行速度が約10km/hで制動距離が約6m、走行速度が約14km/hで制動距離が約11mとなり、レールと台車車輪の粘着係数μ=0.12で得られる制動距離はほぼ等しい結果となった。また、台車＋ウエイト7.5t時の走行速度は約10km/hでは制動距離が約10mであった。

図－6は、セグメント台車とズリ鋼車を連結した状態の逸走を想定した制動試験結果で、セグメント台車にウエイト4.7t積載させ＋牽引重量5.48t（空のズリ鋼車2台相当）を連結した状態で区間－1を逸走させてから制動した試験結果を示す。

この結果より粘着係数はμ=0.13で得られる制動距離はほぼ等しい結果となった。以上の結果から走行速度が速くなれば制動距離は長くなるが、いずれも装備機器類等の運動量があり、セグメント台車の制動時に軌条上で安全に制動停止する事が確認できた。

4. まとめ

今回、制動装置付セグメント台車システムを地下鉄シールドトンネル工事に適用した。その結果、当システムが急勾配のシールドトンネルにおいて有効に機能する事が確認でき、セグメント台車の逸走事故防止対策としての安全性が向上した。今後の課題として、現状のシステムでは運転手の逸走の確認を前提とした、直接制動システムであり、二重の安全装置として自動制動によるセグメント台車システムへの展開を図って行きたいと考える。

最後に本システムの開発にあたり、御指導、御協力して戴いた関係者の方々に感謝の意を表します。