2. セルフクライミング式大型インクライインの開発と実用化

清水建設㈱：菅原 尚也

1. はじめに

空港大橋を架設するために資機材を始め、掘削士砂搬出用ダンプトラックやコンクリートミキサー車を運ぶためインクライイン設備が建設されている。本インクライインは、完成すると「最大積載重量 40t」、「昇降勾配角度 34°」、「最大移動距離 約 200m」、「最高速度 75m/min」の大型運搬設備となる。

インクライインはH型鋼で架設された架台上の軌道を昇降する。架台延伸作業は、インクライン台車上に 25t ラフターケーンを積載し、ダウンサホールハンマーにより杭を打設し、架台を下方から 1 スパンごとに組み立てていく。従来工法では先端に巻上機を設置するか、あるいはリターンシーブを先端に配置して、巻上機を下方に設置する方法しかなかった。しかし、架台延伸作業中はこれらを盛り換える必要があり、替替作業が作業効率を下げ原因となる。このため、架台延伸作業時にあくらも架台の資材及び作業構台の資機材を効率的に運搬できる新しい昇降方式のインクライインを開発し実用化したので、ここに報告する。

2. 工事概要

空港大橋は、広島空港と中國横断自動車道尾道松江線を結ぶ全長 30km の地域高規格道路の一部である。図－1 に空港大橋架橋地点を示す。当共同企体はこの橋梁工事の内、左岸側下部工の施工を担当している。橋梁下部工は勾配 34° ～38° の傾斜地に建設されるため、工事で使用する「油圧ショベル、ダンプトラック、コンクリートミキサー車、移動式ケーラン」等の重機及び「鋼材、鉄筋、覆工板」等の資材の運搬及び人員輸送のために「インクライイン」を使用する。

工事名：主要地方道本郷大和線橋梁整備工事（空港大橋 左岸側 下部工）
工事場所：広島県豊田郡本郷町大字船倉
工期：平成 11 年 10 月 6 日～平成 16 年 12 月 28 日（63 ヶ月）
発注者：広島県
施工者：清水建設・鴻池組・広成建設 共同企体
工事内容：作業構台 4 箇所、掘削工 約 36,000m³、法面工 約 4,600m²、深基礎工 26 本
（橋脚 6 基、コンクリート工 約 48,000m³、鉄筋工 約 7,400 t）
インクライイン設備工（40 t・30 t 搭載）2 基
図－1 空港大橋架橋地点

3. 完成時のインクライ

図－2の工事概要図に示すとおり、インクライは上段と下段の2基設置され作業構台間の移動を行う。また、H型鋼で架設された架台上を昇降する設備であり、最終的には図－3に示す昇降機構となる。下方に「巻上機」を設置し、巻上機と台車を上方に配置された「上部シーブ」を介して、ワイヤーロープで接続したものである。また、表－1に完成時のインクライ主要諸元を示す。
表 - 1 主要諸元（架台完成時）

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大積載荷重</td>
<td>40t</td>
</tr>
<tr>
<td>台車質量</td>
<td>60t</td>
</tr>
<tr>
<td>停止位置</td>
<td>4箇所</td>
</tr>
<tr>
<td>軌道延長</td>
<td>199m</td>
</tr>
<tr>
<td>傾斜角</td>
<td>34°</td>
</tr>
<tr>
<td>台車寸法</td>
<td>14m×6.5m</td>
</tr>
<tr>
<td>軌条幅員</td>
<td>10m</td>
</tr>
<tr>
<td>定員</td>
<td>20名</td>
</tr>
<tr>
<td>操作盤位置</td>
<td>巻取・台車上・各停止場所計6箇所</td>
</tr>
<tr>
<td>巻上機出力</td>
<td>800kW</td>
</tr>
<tr>
<td>台車運搬速度</td>
<td>75m/min, 70m/min, 60m/minの3段階</td>
</tr>
<tr>
<td>緊急ブレーキ</td>
<td>ディスクブレーキ</td>
</tr>
</tbody>
</table>

4. 架台延伸作業時における昇降装置の開発

最終設備としてのインクラインは前述の通りであるが、架台延伸作業はインクライン台車上から施工しており、架台を1スパン（水平距離L=5m）完成すると台車を上方に移動する必要がある。この架台延伸作業時において、簡易に台車を移動できる昇降装置を開発した。

（1）開発にあたっての条件

開発にあたっては以下のような条件があった。

① 台車上にラフターグレーンを配置し、ダウンサップホールハンマーによる杭打ち作業を含むインクライン架台延伸作業を行う。

② 架台延伸作業時、架台が1スパン完成する度に、更に上方の架台を施工するため、台車昇降範囲を順次延伸できる。

③ 架台延伸に伴う資機材の搬入を本インクラインで行う。

④ 架台延伸作業と作業場台車設置作業を併行する必要があり、重機等の運搬を行う。

⑤ 万が一、台車が逸脱した際にも安全で且つ確実に台車を停止できる。

以上の要求項目を満足するための装置を検討した結果、台車がセルフクラミングできる「ラックアンドピニオン方式」のインクラインを開発・実用化した。
（2）ラックアンドピニオン方式の概要

図－4に「ラックアンドピニオン方式」インクライの駆動部概要図、表－2にその主要諸元を示す。

図－4 駆動部概要図

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大積載荷重</td>
<td>35t</td>
</tr>
<tr>
<td>台車質量</td>
<td>65t</td>
</tr>
<tr>
<td>停止位置</td>
<td>任意</td>
</tr>
<tr>
<td>傾斜角</td>
<td>34°</td>
</tr>
<tr>
<td>台車寸法</td>
<td>14m × 6.5m</td>
</tr>
<tr>
<td>軌条幅員</td>
<td>10m</td>
</tr>
<tr>
<td>定員</td>
<td>20名</td>
</tr>
<tr>
<td>操作盤位置</td>
<td>台車上1箇所</td>
</tr>
<tr>
<td>巻上機出力</td>
<td>30/15kW × 4/8P × 4台</td>
</tr>
<tr>
<td>台車運搬速度</td>
<td>8m/min, 4m/min の2段階</td>
</tr>
<tr>
<td>駆動部減速比</td>
<td>1/345.1（線型遊星減速機）</td>
</tr>
<tr>
<td>ピニオン</td>
<td>P.C.D 507.5 （11枚歯）</td>
</tr>
<tr>
<td>ピンラック</td>
<td>Φ70mm, ピッチ 140mm</td>
</tr>
<tr>
<td>緊急ブレーキ</td>
<td>ディスクブレーキ</td>
</tr>
</tbody>
</table>
（3）駆動部

本開発機は図－４に示すように重機を積載する「運搬台車」の内側に自力昇降のための「駆動部」を設けているのが最大の特徴である。

駆動部には独立したピニオンを前後6台（前後方向3台×2列）設置している。このピニオンで左右からピンラックフレームを挿入する構造である。ピンラックフレームはΦ70mmのピニオンを2列、140mmのピッチで配置しフレーム状に組んだものである。これをH型鋼で架設された架台中央桁上に配置する。

図－５にラックアンドピニオンによる駆動部側面図を示す。6台のピニオンのうち、前方4台のピニオンには減速機を介して、それぞれに電動モータ（30kW）が接続されている。この電動モータによりピニオンが回転すると、台車はピンラックに反力を取りセルフブライミングすることができる。

また、後方2台のピニオンには増速機を介して、ディスクブレーキが取り付けられている。インクラインが昇降する際、ディスクブレーキが接続されたピニオンはフリに回転する。しかし、台車が逸走した際には、過速度検出器で台車運転速度の130％を検出し、ディスクブレーキが作動する機構になっていている。ディスクブレーキが作動するとそれに接続されたピニオンの回転が停止し、ピニオンがピンラックと噛み合うことで台車自体を安全かつ確実に停止させることができる。

この駆動部と運輸台車部とはそれぞれ独立した構造であり、お互いの揺れが伝達されないように、球面軸受を介してピン接続されている。また、駆動部は自重をピンラックフレームで支え、その上を昇降する構造になっているため、駆動部自体に運搬台車部と同様に「車輪」「サイドローラ」「バックアップローラ」が取り付けられている。

図－5 駆動部側面図

（4）架台完成時台車改造

下段インクライン架台は35スパンである。架台完成時、台車にはワイヤーロープが接続され、インクラインはワイヤーロープ巻きにより昇降する設備となる。このため、台車に取り付けられた駆動用モータ、ピニオン、減速機は不要となり撤去する。

ディスクブレーキは「ワイヤーロープ巻上方式」に変更した際にも台車側に残される。ワイヤーロープ切断時、台車を非常停止させるためである。

また、前方の駆動用モータ撤去時には、更に一組のディスクブレーキを増設する。これは「ワイヤー
5. 効果
インクライミングの昇降を今回採用した「ラックアンドピニオン方式」によるセルフクライミングとしたことにより、以下のような効果をあげることができた。
① 台車はインクライミング架台上において、任意の場所に移動、停止することができ作業性が向上した。
② 台車はインクライミング架台延伸作業時においても、作業構台へ重機等を運搬することができた。
③ 他の盛替方式に比べ移動速度が速いため、所定の作業場所までスムーズに移動することができた。
④ 緊急時、ピニオンに取り付けられたディスクブレーキを作動させることで安全且つ確実に停止することができる構造となった。

写真-1 架台施工状況

6. おわりに
今回、急勾配の傾斜地をラックアンドピニオンでセルフクライミングするインクライミングを開発実用化したことで、架台延伸作業時における作業効率を向上させることができた。また、ディスクブレーキによる制動で台車を安全にしかも確実に停止させることができ、台車上における杭打ちを含むクレーン作業を支障なく安全に行うことができた。
今後は架台延伸作業と併行して資機材の運搬を必要とする同種の土木工事にも水平展開が可能であり、用途の拡大も図っていくこととなっている。
最後に、開発・実証を共に行ってきた三菱三池製作所の担当者、ならびに採用にあたり、ご指導、ご鞭撻をいただきました関係各位の皆様に感謝の意を表する次第です。