3. 吸塵式煙突除染システムの開発

1. はじめに

廃棄物収集施設の解体工事は、ダイオキシン類のばく露を伴う危険な作業である。
そのため厚生労働省労働基準局から「廃棄物焼却施設内作業におけるダイオキシン類によるばく露防止対策要綱」という平成13年に公布され、解体作業前に内部に付着したダイオキシン類の汚染物を除去（以下、除染という）することが義務づけられた。
現状、この除染は、主に高圧ジェット洗浄でこれをロボット又は、人工用ハイドリジングにより除染する方法が用いられているが、汚染水が大量に生じるため、処理費用を含めた解体費用が高騰になっている。
本開発の吸塵式煙突除染システムは、汚染物を増量させない環境負荷低減型の工法であって、除染ヘッドのフード内に構成した研磨ブラシで汚染物を撫き落とし、それらを吸塵・密閉輸送してプレダスターで汚染物を袋詰めするものである。また、小型CCDカメラを搭載しており、管理区域外から作業工程を確認しながらシステムを制御できる。
本報では、吸塵式煙突除染システムの機能、施工能力、作業環境改善等について紹介する。

2. 開発の目的

焼却施設の解体工事の基本は、付着または含浸しているダイオキシン類を拡散させることで、汚染物を増量させないことが重要である。
現状、高圧水やサンドブラストによる除染方法がルールとなり使用されている。また、これらの方法より改善を図ったドライアイスブラストやカッタ切削方式などが提案されている。
これらによる除染作業は、ダイオキシン類汚染物が増量すること、また、ダイオキシン類が作業環境を拡散する問題がある。

そこで、本開発のターゲットはダイオキシン類汚染物を『拡散』『増量』させることに、次の目標を設定した。
①汚染物の除去から回収までクローズドシステムとする。
②汚染物が増量しない除染方法とする。

3. システムの概念

本除染システム構成の概要を図1に示す。

図1 吸塵式煙突除染システム構成の概要

本除染システムは、上部に煙突の内面を突っ張る3本の把持アームと下部に内面を所定圧力で追従させる回転アームに2対の除染機で取付けて構成されている。また、上部に内壁の障害物又は除染程度を確認する監視カメラを搭載し、下方に粉塵の飛散を抑止する噴霧機構を設置している。さらに、除染ヘッドのフードからプレダスターを経由して集塵機まで、吸引ホースが接続されている。
除染ヘッドのフード内に構成された研磨ブラシで汚染物を撫き落とし、その汚染物を吸引ホースで吸塵・

钱高組 技術研究所: ○岩崎 則夫
新東サーブラスト(株) 開発部: 鈴木 康之, 六反田 等
密閉輸送してプレダスターで汚染物を分離・回収して袋詰めする。

3-1 システムの仕様
　1）対象煙突
　　内径: φ1500〜2500mm
なお、把持アームと回転アームを組替えることで対象径は、最小φ900mm、最大φ3500mmまで可能である。

2）除染装置本体
　①装置高さ: 約2780mm
　②重量: 約500kg
　③研磨ブラシ（2対設置）
　　・サイズ: φ250×300mm幅
　　・回転数: 100〜200rpm
　　・押付力: 10〜20kg
　④公転数: 1〜5rpm (インバータ制御)
　⑤把持機構: 内径φ1500〜2500mmに対応する
　　・把持アームを組換えて、内径φ900〜3500mmに対応可能となる。
研磨ブラシは、煙突の内面が鋼板製の場合に用い、内面の材質がレンガやキャステブルの時は、回転打撃式の除染ヘッドに組替って、表面を研削してダイオキシン類が含浸している部位を削り取ることもできる。

図3 除染装置本体（平面）

3-2 粉塵の飛散防止
　本システムは、粉塵の飛散防止の噴霧機構が設置されている。一例として用いる粉塵飛散防止剤の特長を次に示す。
　1）一般性状
　　・外観: 非可溶性
　　・比重: 1.01
　　・pH: 6〜7
　　・イオン性: 弱アニオン
　2）特長
浸透性: アニオン性界面活性剤の働きにより、施工面への水分が高い浸透性を有する。
　結着性: 機能性高分子の持つ高い結着性が施工面への薬剤の長時間保持と作業性の向上に寄与する。
　保水性: 保水剤の効果により高い保水性を長時間持続し、飛散後の水分蒸発を抑制する。

3-3 吸塵効果
　本システムの特長の一つは、ダイオキシン類を拡散させない吸塵式除染装置を用いている点である。
所定の集塵仕様での検証結果を表1に示す。
集塵仕様
　①吸引風量: 10 m³/min
　②真空度: 9.8 kPa
除去装置の除染ヘッドから2m離れた位置で、ビエゾパランサー粉塵計により計測した。
表1 粉塵量の測定

<table>
<thead>
<tr>
<th>粉塵飛散抑制処理の有・無</th>
<th>除去装置運転の有・無</th>
<th>集塵機運転の有・無</th>
<th>測定値:mg/m³</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>無</td>
<td>有</td>
<td>有</td>
<td>0.02〜0.06</td>
<td></td>
</tr>
<tr>
<td>無</td>
<td>有</td>
<td>無</td>
<td>0.10〜2.91</td>
<td>粉塵が目視可能(粉塵煙となる)</td>
</tr>
<tr>
<td>有</td>
<td>有</td>
<td>無</td>
<td>0.04〜0.08</td>
<td></td>
</tr>
<tr>
<td>有</td>
<td>有</td>
<td>無</td>
<td>0.02〜0.06</td>
<td></td>
</tr>
<tr>
<td>有</td>
<td>有</td>
<td>無</td>
<td>0.06〜0.55</td>
<td></td>
</tr>
</tbody>
</table>

粉塵飛散抑制剤の有無と除去装置・集塵機の運転の有無による粉塵量の飛散の評価である。
粉塵飛散抑制剤無、除去装置・集塵機の運転無の0.04〜0.08mg/m³比べ、粉塵飛散抑制剤を使用すると粉塵量は少なく、粉塵飛散抑制剤の効果はある。
また、集塵機を運転させると同様に粉塵量は、少なくなることから吸塵式は有効である。

4. 検証試験
内径φ2200mm×長さ50000mm鋼管を供試体に用いた。内部にセメントミルク(60%)を塗布して、
諸条件でのセメントミルクの取れ具合を除染の程度として評価した。
吸塵式除染装置の外観を写真1、および検証試験の全景を写真2に示す。

写真2 検証試験全景
本除染システム・装置の作動を確認した後、機能・能力・作業環境について調査し、当初、設定した目標値であることを確認した。
機能として
①除染程度
②把持機構と把持圧
③除染ヘッドの追従性と与圧
④除染可能範囲
能力として
①昇降速度
②研磨プランの回転数
作業環境として
①粉塵濃度
②騒音
などが項目である。
検証試験の状況を写真3に示す。

写真3 検証試験状況

また、吸塵ダクトホースの集合部を写真4に示す。
(2対の除染ヘッドからのダクト集合部)

写真4 吸塵ダクト

5. 本システムの除染フロー

1) 除染前準備
 ・架設電源の設置
 ・電気配線接続
 ・写真撮影

2) 残留灰回収、清掃
 ・粉塵飛散抑止の湿潤処理と飛散防止対策
 ・集塵機によるクローズドの残留灰の吸引回収
 ・回収した汚染物は袋詰にして処理

3) 除染
 ・除染装置及び昇降装置をクレーンにて煙突の上部に設置
 ・煙突の上端部に蓋をし、集塵機の作動で煙突内を負圧
 ・除染装置を下降し、制御ケーブル、吸塵ケーブルを接続
 ・粉塵飛散抑制機構により湿潤処理をしながら除染ヘッドで除染

4) 回収

・除染と同時にクローズドにより吸引回収

5）廃棄物処理
 ・廃棄物処理法に基づき適正に管理して処分

 準備
 ↓
 残留灰の回収と清掃
 除染
 回収

5－1 本システムの特長
1) 汚染物の除去は、吸塵式の機械装置を用いる。
2) 機械により確実な除染ができる。
3) 粉塵の飛散がなく、環境が保全される。
4) 汚染物の除去から回収・袋詰めまでクローズド方式である。
5) 汚染物が増量しない。
6) CCDカメラにより遠隔操作し、除染の確認ができる。

6. おわりに

焼却施設の解体工事の基本は、付着しているダイオキシン類を『拡散』しないことであり、汚染物の除染手段は、汚染物を『増量』させない方法が望ましい。
本開発のコンセプトは、
①汚染物の除去から回収までクローズドシステム
②汚染物が増量しない除染方法
として吸塵式除染システムを紹介した。
今後、実用化は、フィールドにて実証を重ねて改善・改良をはかり、除染が高品質で、安全、且つ、処理能力を高めていく所存である。

参考文献
1) 厚生労働省労働基準局安全衛生部化学物質調査課：
廃棄物焼却施設解体作業マニュアル、(社)日本保安用品協会、2001.6