4．建設汚泥の新しい再生資源化処理工法
—繊維質固化処理土工法と生成土の強度特性—

東北大学大学院環境科学研究科：髙橋 弘
株式環境技術研究所：○森 雅人

１．はじめに

建設汚泥は、建設工事に伴って発生する掘削汚泥や
微細な泥状土などであり、そのままでは盛土などに直
接処理できない。従って、年間800万トン程度の建設
汚泥が排出されているにもかかわらず、建設汚泥のリ
サイクル率は低く、ごく一部に利用されるものを除き、
大部分は産業廃棄物である「汚泥」として中間処理施
設で脱水処理を施すか、あるいは直接最終処分場に持
ち込まれている。しかししながら、処分場の不足・遠隔
化は深刻な問題であり、輸送コストの負担から建設汚
泥の不法投棄が後を絶たず、地球環境への汚染負荷の
影響が大きな問題となっており、建設汚泥の有効利用
が望まれているのが現状である。

これまでの建設汚泥の処理法としては、天日乾燥、脱
水処理、セメント系固化材による固化処理などが挙げ
られる。しかし、天日乾燥では仮設きの場所と処理に
長時間を要し、また脱水処理では大きな脱水施設が必
要であるとともに、脱水処理の問題などが依然として
残る。固化処理工法はセメント系固化材を建設汚泥に
混合させ、固化する工法であるが、本工法により生成
される土砂（以下、固化処理土と記す）は、コンクリー
トのように硬くてもろい性質がある。例えば、泥水と
セメント系固化材を混合し流動化させ、まだ固まらな
いコンクリートのようにポンプなどで流し込んで埋め
そのの施工を行う「流動化処理工法」では、生
成される土砂（固化処理土）は、一軒圧縮試験における
破壊ひずみが通常土より小さく、品質改良が十分とは
言えず、盛土材としての用途に適さない場合が多々あ
る。例えば村田らは、「流動化処理工法の弱点は、処
理土に粘り強さが無く、外力が加わると小さなひずみ
で破壊に至ることである」と述べている。

さらに固化処理土は乾燥処理により劣化が激
しいと言われているが、そのため、固化処理工を盛土
材などとして使用する場合には、外部に露出しないよ
うに固化処理土を山土などで被覆する必要があると
指摘されている。つまり、固化処理土は品質改良が
十分であるとは言い難い。

そこで著者らは、十分な品質特性を有する盛土材料
として汚泥の再資源化をはかるために、建設汚泥に繊
維質物質である古紙破砕物と高分子系改良材を添加
し、高含水比泥土を再資源化する技術を開発した
。本工法では、汚泥に古紙を投入し、古紙に自由水の大
部分を吸水させるため、高含水比土に対しても大量
のセメント系固化材を添加する必要がなく、かつ高分
子系改良材の添加量も少なくて済むために処理費の大
幅な低減につながるとともに、処理土の内部に繊維質
を含むため、破壊しづらい強力な粘土（以下、繊維質固化処理土と記す）の生成が可能になる。

本論文では、新しい処理工法（以下、繊維質固化処
理工法と記す）の概要と繊維質固化処理土の強度特
性ならびに実際の施工例について詳述することにし、
今後の展開について述べることにする。

２．繊維質固化処理工法の原理

繊維質固化処理工法の原理を簡単に記述すると
以下のようになる。①高含水比泥土は、図1(a)に示されるように土粒子が
自由水の中で自由に動き回る状態であるため、若
千の降伏応力を持っているが、流体としての挙動を
示す。このため高含水比泥土の処理はバイブライン
かパキュームカーター等によらないならばならない。
②この状態の高含水比泥土に吸水性の高い新製の古紙
のような繊維質物質を混入すると、図1(b)に示すよ
うに土粒子の周りの自由水が繊維質物質に吸水され、
見かけの含水比が低下する。繊維質物質の添加量は含水比に応じて増減させると、図1(c)に示すように水溶性高分子が溶解し、土粒子の表面に吸着する。土粒子間の架橋・吸着効果により団粒化構造の中の自由水を封じ込め、流動性を失わせ団粒状態となる。

①最後に助剤を混合し、攪拌機により凍結を攪拌してせん断を与えると、図1(d)に示すように土粒子が団粒化して破水性の高い土砂が生成される。

処理士を植生士壌として再利用する場合、セメント系固化材を混入する必要はないが、盛土材の利用としてある程度の強度を必要とする場合は、目的とする強度に応じて、さらに必要量のセメント系固化材を添加する。

以上の工程により、高含水比泥砂が繊維質固化処理士として再資源化される。

3. 繊維質固化処理士の安全性

本工法で使用する高分子系改良剤および助剤に重金属等有害物質は含まれており、地元の微生物により完全に分解されてしまうので、地球環境に負荷を与えないことが既に確認されている8)。また古紙に使用されているインキも、近年では植物油を用いた環境に優しい「エコインキ」が開発され、既に使用されており9)。このインキも毒性が低い。古紙はほとんどがセルロースから構成されており、生物学的に難分解性物質である。セルロースを分解する生物は一般的に糸状菌であるが、①セメント系固化材の影響により土砂内部は高アルカリ性を示し、糸状菌等が生育できない9)、②土砂に含まれる粘土鉱物の大きさは0.02μm～1.00μmであり9)。繊維質固化処理士のセメント系固化材の水和によるセメントング効果とあいまって間隙の大きさはそれ以下であると考えられるが、糸状菌胞子の大きさは2～10μmであるので、雨水とともに菌が侵入する可能性は極めて低いなどの理由から、繊維質固化処理士内部の古紙はほとんど劣化しないと推察される。従って、本研究で提案する繊維質固化処理士は、定着的であるが、地球環境に対して安全な土砂と言える。

4. 繊維質固化処理士の強度特性

4.1 壓縮強度

初めに試験に使用する供試体を作成した。供試体の作成には、模擬泥砂を使用した。作成方法は、粘土とシルトを40:60(乾燥重量比)で混合し、それに水分調整して含水比105%および150%の泥砂を作成した。供試体の作成は、「建設用土の高度処理・利用技術の開発（盛土グループ）共同研究最終報告書 建設用土改良土の耐久性」に準じた方法を用いた、その要は以下に示すとおりである。

① 粘土とシルトを40:60(乾燥重量比)で混合し、加水分調整して含水比を調整する。

② 繊維質固化処理士の作成には、含水比を調整した泥砂に古紙破砕物、高分子系改良剤および助剤を加え、攪拌・混合する。さらに所定のセメント系固化材を加える。固化処理士の作成には、泥砂にセメント系固化材のみを加え、攪拌・混合する。

③ 初期養生として、上述の処理士を容器に入れて密封し、20±3℃で3日間養生する。

④ 固化処理士に対しては、初期養生後、処理士をときどき加水し、その後、供試体を作成する。供試体作成には、直径5cm、高さ10cmのモールド(供試体作製容器)を使用した。一軸圧縮試験に使用する供試体の寸法は直径5cm、高さ10cmとし、また圧縮引張試験に使用する供試体の寸法は直径5cm、厚さ2.5cmとした。

⑤ 供試体から水分が蒸発しないようにモールドを密閉材で被覆し、20±3℃で28日間養生する。

![図2 一軸圧縮試験結果の一例](image-url)

作成された供試体を材料試験機にセットし、一軸圧縮試験を実施した。図2に一軸圧縮試験の結果の一例を示す。図2の縦軸および横軸は、それぞれ圧縮応力および圧縮ひずみを示している。固化処理士の場合、荷重を増加させていくと圧縮ひずみは大きくなるが、1～2%の圧縮ひずみで圧縮応力は最大値を示し、破壊に至っていることが分かる。これに対して、繊維質固
化処理土の場合、破壊ひずみは7〜8%と大きく、また破壊後も圧縮応力が急激に減少することなく、残留強度も大きくいうことが分かる。つまり、纖維質固化処理土は、セメント系固化材を用いた従来の固化処理土に比べて破壊に至るまでのひずみ量が大きく、残留強度が大きく粘り強い性質を示すことが大きな特徴である。

図3に試験後の供試体の破壊の様子を示す。固化処理土は明確な破壊面が現れており、岩石やコンクリートの破壊形態とよく似た形状を示している。これに対して纖維質固化処理土の場合、明確な破壊面が現れておらず、全体的に膨らんだいわゆる崩壊形を示している。これは、内部に纖維質物質を含むため、土粒子と纖維質が複数に絡み合い、破壊を生じ難い結果のと同時に纖維質を通じて応力が分散されるためであると考えられる。

図4 圧縮引張試験の結果の一例

国5 圧縮引張試験の概要

図6 引張試験後の供試体の様子

4.2 引張強度

図4に圧縮引張試験の結果の一例を示す。圧縮引張試験は、図5にその概要を示すように、供試体の直径方向に圧縮荷重をかけ、その荷重により供試体が左右に引っ張られる時圧縮強度を求めるものである。図4の縦軸は圧縮荷重を、横軸は圧縮方向のひずみ量を示す。この図に示されるように、引張強度も圧縮強度と同じ傾向を示している。すなわち、固化処理土は小さなひずみで破壊に至るが、纖維質固化処理土は破壊に至るまでのひずみ量が大きいことが分かる。すなわち、纖維質固化処理土は従来の固化処理土に比べて、外部からの荷重に対して大きな変形に耐え得ることを示している。

図6に試験後の供試体の破壊の様子を示す。圧縮引張試験の場合も圧縮試験の場合と同様に固化処理土は明確な破壊面が観察され、また供試体もばら円形を保っていることから、小さな変形で破壊に至ってしまい、明確な破壊面が見られず、また全体的に押しつぶされている。これはこのような大きな変形が生じるまで破壊に至っていないことを示すものであり、纖維質固化処理土が従来の固化処理土に比べて、いかに粘り強い性質を示すかが分かる。
4.3 乾湿繰返し試験における耐久性

セメント系固化材による従来の固化処理土は乾湿繰返しにより劣化することが報告されている。しかし、固化処理土は乾燥過程において収縮クラックが生じ、乾湿のサイクル数が増加するにつれて塊状の崩壊が発生し、一軸圧縮強度も減少する。そのため、固化処理土を実際に使用する場合は、乾湿の影響をなるべく受けないように、外部に暴露しないように山土などで被覆すべきであると報告されている。繊維質固化処理土に対しても乾湿繰返しによる耐久性を評価するために、「治山汚泥の高度処理・利用技術の開発」に準拠して乾湿繰返し試験を実施した。なお、この際、比較のため固化処理土も同時に作成し、乾湿繰返し試験を実施した。試験では、40℃煮乾燥2日間、20℃水浸1日間の合計3日間を1サイクルとして10サイクル繰返し、所定のサイクル毎に一軸圧縮試験を行い、一軸圧縮強度の変化を調べた。

図7にサイクル数と一軸圧縮強度との関係を示す。図中の△および■印は固化処理土の結果を、また○、△、○印は繊維質固化処理土の結果を示している。乾湿繰返し試験を実行に当たって、固化処理土および繊維質固化処理土ともに12本の供試体を作成した。図中の棒は、(一軸圧縮試験に供した供試体の数) / (一軸圧縮試験を行いに当り現存していた供試体の数)を示している。すなわち、3/12とは、0サイクル時に12本の供試体が存在し、そのうち3本を使用して一軸圧縮試験を行い、それらの平均値を図中にプロットすることを意味する。つまり、繊維質固化処理土の場合、一軸圧縮試験に供し得たことである。固化処理土の值は、以下のよう試験状況であったことを示している。すなわち、初期含水比150%の固化処理土の場合、2サイクル終了時点で7本しか供試体が現存せず、残り2回の試験で3本ずつ使用することを考え、1本の一軸圧縮試験に使用した。残りの6本でさらに乾湿繰返し試験を続けたが、6サイクル終了時点で1本が崩壊し、5本のみ現存したため、最後の試験(10サイクル終了時)に3本使用することを考え、2本の一軸圧縮試験に使用した。10サイクル終了時には、1本のみ残っていたので、この1本を用いて一軸圧縮試験を実施した。初期含水比105%の場合、2サイクル終了までに11本の供試体が崩壊し、2サイクル終了した時点で

図7 乾湿繰返し試験におけるサイクル数と一軸圧縮強度との関係

一方、繊維質固化処理土は、乾湿繰返しのサイクル数が増加してもほとんど劣化せず、また一軸圧縮強度の低下も見られず、10サイクル終了時においても0サイクル時の強度とほぼ同程度の強度を有していることが分かる。また10サイクル時の強度は、3本の供試体を用いて測定しており、繊維質固化処理土は劣化せず、乾湿繰返しに対して高い耐久性を示すことが実験的に確認された。図8に乾湿繰返し試験終了後の供試体の写真を示す。先に述べたように含水比105%の固化処理土は2サイクルまでに9本の供試体のうち8本が崩壊した。

繊維質固化処理土は10サイクル終了後も供試体にクラックの発生や劣化はほとんど見られず、一軸圧縮強度も初期の強度を維持しており、強度の減少も見られ
少ない。すなわち、繊維質固化処理士は乾燥繰り返しに強く、ほとんど劣化しないことが確認された。このことは、固化処理士のように使用箇所を限定する必要がないことを意味する。

図 8 乾燥繰り返し試験終了後の供試体の様子
（初期含水比はともに 105%、セメント系固化材添加量は 100kg/m³）

図 9 凍結融解試験におけるサイクル数と一軸圧縮強度との関係

図 10 凍結融解試験におけるサイクル数と破壊ひずみとの関係

4.4 凍結融解試験における耐久性
生成土を寒冷地において盛土として利用するにあたっては、凍結融解による耐久性についても把握しておく必要がある。つまり、寒冷な地域では冬季間、土中の水分が凍結する。水は凍結によって体積が膨張するため、凍結融解を繰り返すことにより土粒子間結合力が低下し、土砂の強度が下がる可能性がある。しかしながら、凍結融解による繊維質固化処理士の耐久性については明らかになっていない。そこで繊維質固化処理士の凍結融解による耐久性について実験的に検討した。供試体の作成条件は上述した方法と同じである。実験では供試体を -21℃で 12 時間凍結した後、+21℃で 12 時間を 1 サイクルとすることにより 1 日の凍結融解のモデルとして、0、1、3、5、7、15 サイクルごとに一軸圧縮試験を行った。また、比較のために従来工法で作成した固化処理士も同様の試験を行った。

図 9 に凍結融解のサイクル数と一軸圧縮強度との関係を、また図 10 に凍結融解のサイクル数と破壊ひずみとの関係を示す。繊維質固化処理士は凍結融解による劣化はほとんど見られず、強度はサイクル数の増加とともに増大している。これは、今回の実験では養生期間を 7 日間としたため、凍結融解試験中もセメント系固化材の水和反応が進行したためであると考えられる。固化処理士も同じ 7 日間の養生期間としたので、同様にセメント系固化材の水和反応が進行していると判断でき、劣化がなければ繊維質固化処理士と同様、サイクル数の増加とともに強度も増大するはずである。固化処理士の強度は 3 ～ 5 サイクル以降は徐々に減少し、15 サイクル終了時には、初期強度の約半分にまで減少している。これは、明らかに固化処理士が凍結融解の影響を受けて劣化したためである。つまり、凍結によって固化処理士の内部に存在する水の体積が増大し、その結果、土粒子間結合力が低下したと考えられる。この土粒子間結合力は、破壊ひずみと密接な関係があると考えられるが、図 10 の結果
は上述の考察と同様の傾向を示している。

以上のことより、繊維質固化処理土の土粒子間結合力は凍結融解を繰り返しても低下することなく、その結果、繊維質固化処理土は凍結融解に対して高い耐久性を示すことが確かめられた。

5. 施工事例
5.1 流域下水道 尾花沢大石田幹線推進工事のポンプ場整備利用（山形県発注、図11）

最上川を横断する推進工事と中継ポンプ場工事から発生した自硬性汚泥と非自硬性汚泥全量を再利用した事例で、①繊維質固化処理土は粘り強く、高耐久性であることから、田園との境にコンクリート構壁を作らない、②無代で盛土材として再利用、③自硬性汚泥の脱水・運搬・管理型最終処分場への処理費用との差額、④非自硬性汚泥の処理費用との差額が生じたため、4,000万円以上のコスト縮減を図ることができた。

図12 浜尾遊水地における施工の様子（写真右のバックホウで高含水比原泥を掘削し、ビットに原泥を入れている。写真左のバックホウがミキサーを装着し、攪拌している。）

5.3 仙台東部共同溝工事（国土交通省東北地方整備局仙台河川国道事務所発注、図13）

当工事は、仙台市宮城野区小田原町内のコンクリート構造物における堆積として発生し、特に道路を通行する必要がある場合に効果的であるとされる。当工事では、夜間の立坑掘進工事から排出される汚泥をビットに貯え、昼間に繊維質固化処理を行うが、当現場は仙台市中心部に近い工事現場であるため、限られた敷地内に生成された土砂を仮置きするだけのスペースの余裕がない。処理が終了する時点でダンプトラックが待機しており、処理作業後、直ちにダンプに荷積みし、4号線バイパス拡幅工事現場に運搬する方式が採用されており、完全なゼロ
エミッションを実現した。

当現場は、限られた敷地内に効率的に重機が配置され、また常に振動・騒音を計測し、低振動・低騒音施工に細心の注意を払いつつながら周辺環境にも考慮し、かつ廃棄物を出さないゼロエミッションを実現しており、それからの環境調和型建設現場の見本とも言うべき現場になっている。

図13 仙台東部共同溝工事現場の全景（本現場は、先の2つの施工現場と異なり、市街地中心部近くに位置し、限られた作業面積しか取れないため、重機が効率良く整然と配置されている。赤丸印部が繊維質固化処理土工法の実施場所）

6. 今後の展開

6.1 軽量盛土材としての利用

繊維質固化処理土工法により生成される土砂の特徴の1つに「軽量性」がある。生成土を軽量盛土材と考えると、大規模構造工事における軽量盛土材としての利用、地すべり危険地域における地盤改良、建築物の裏込め材など多くの適用箇所がある。構造物に作用する土圧は土の密度に比例するので、構造物の裏込め材に軽量盛土材を用いることができれば、構造物自体を小さくすることができ、その結果、コスト縮減に繋がる。大規模構造工事などでは、埋め立てる土砂の自重で地盤沈下が生じてしまうことから、かなりのコストをかけて軽量盛土材を購入・作成しているが、繊維質固化処理土工法を用いれば、今までは廃棄物として捨てていた建設汚泥から安価に軽量盛土材を生成することができる。今後、軽量盛土材のとしての活用実績を期待したい。

6.2 浄水汚泥を用いた屋上緑化用人工軽量植生基盤材

の作成

近年、ヒートアイランド現象や熱の拡散化の効果などからビル・マンション・病院などで屋上緑化のニーズが増えている。屋上緑化工事を行う場合、建物の屋上に植生基盤材を敷設する必要があるが、この植生基盤材に求められる重要な性質に「軽量性」と「保水性」がある。繊維質固化処理土工膜が軽量であることを前に述べたが、建設汚泥を用いて繊維質固化処理土工膜を生成した場合、処理土を形成している土粒子の密度が小さいため、混練時比重0.6以下という超軽量な土砂を生成することは難しい。一方、浄水汚泥は、元来、水中に浮遊懸濁していた粒子を凝集・沈殿させたものであり、土粒子そのもの密度が建設汚泥の土粒子に比べてかなり小さいことから、超軽量な植生基盤材を生成することが可能であると考えられる。そこで、著者らは浄水汚泥に繊維質固化処理土工膜を適用し、極めて軽量な植生基盤材を作成した。生成された基盤材は、シート処理の結果、混練時比重0.68であり、超軽量の定義には若干及ばないものの、ほぼ軽量であり、かつ他の人工軽量植生基盤材に比べて2～3倍という極めて高い保水性・保肥性を有することが確認された。

図14は、浄水汚泥を用いて作成した植生基盤材により屋上緑化を行った一例であり、植生基盤材として高い評価を受けており、東京都のような大都市の浄水場では多くの汚泥が発生することから、例えば、浄水場から発生する汚泥を最終処分場で処理する際にもかかっていった経費をそのまま使用して、PFI事業等自らが軽量人工植生基盤材を作成したとすると、緑化工事費用の半分を占める軽量土壌の購入費が不要になる。この場合、浄水場の大幅な経費負担軽減にはならないが、軽量土壌を購入する必要がないので、極めて安価に緑化工事を行うことができ、ヒートアイランド現象の緩和や住民の税金の軽減などにも繋がると予想される。今後、このようなシステム作りを目指したいと考えている。

図14 屋上緑化の一例（大分市役所本庁舎屋上緑化）
6.3 赤土流出による海洋生物被害の軽減対策

沖縄県では降雨により赤土がガリ侵食を受けて海洋に流出し、珊瑚などの海洋生物に被害を与えるなど、赤土流出が大きな問題となっている。これまでに赤土流出対策の様々な対策が検討されているが、流出する赤土の大半は裸地からであり、従って、裸地に対する対策が最も効果的であるとされる。繊維質高分子処理土工法が赤土の改質に適用できれば、改良された赤土は、強度特性に優れ、乾湿繰返しに対する耐久性が高まることが予想されることから、ガリ侵食を受けることなく、赤土の流出が大幅に削減される可能性がある。現在、著者らの研究室で纖維質高分子処理土の赤土改良への適用性を実験的に検討しており、近い将来、試験施工を行うとしている。

7. むすび

建設汚泥リサイクルの向上を目指して新たに開発された繊維質高分子処理工法は、生成される砂土が強度的に優れ、導湿時間短縮や凍結融解に対して高い耐久性を示すなど、土質学的に優れた性能を有する。この優れた性能を生み出すための要素は、繊維質高分子処理土を生成する過程で混合する古紙破砕物に、再資源化処理の過程で高含水比浮土に繊維質物質である古紙破砕物を十分に攪拌・混合するため、生成される繊維質高分子処理土では土粒子と繊維質が互いに絡み合った複雑な構造体を形成する。この土粒子と繊維質が絡み合った構造体自体で十分に山土などの一般土以上の強度を発現するが、さらにこの繊維質を通じて応力を分散されるため、地震時のような大きな動的荷重がかからないでも、地盤材料全体に応力が分散され、集中応力を受けることがない。このことが高い破壊ひずみを生み出し、粘り強い土を生成する。粘り強い土であるということは地震時の大きな繰り返し荷重に十分耐え得ることを意味しており、以上の結果より、繊維質高分子処理土は地震に強く、地震対策用地盤材料として十分使用可能であり、かつ効果的な地盤材料であると判断できる。今後、動的荷重による繊維質高分子処理土の変形特性や液状化に対する検討などを予定している。

なお、本研究の一部は、科学研究費補助金（基盤研究（B）、課題番号 16360453、代表：高橋 弘（東北大学教授））によったことを付記し、謝意を表する。

参考文献

1) 久野 悟郎：土の流動化処理工法、pp. 1–19, 1997, 技報堂出版
2) 村田 修：流動化処理工法，土木学会誌，Vol. 87, 4 月号，pp. 25–28, 2002
3) 小川 伸吉、飯本 一己、藤崎 勝利、椿 雅俊：建設汚泥改良土の利用に関する基礎的研究（その 9）－乾湿繰返しによる性状変化－，第 31 回地盤工学研究発表会講演要旨集，pp. 303–304, 1996
4) 松原 一他 7 名：ため池堆積土を用いた軽量地盤材料の特性，軽量地盤材料の開発と適用に関するシンポジウム論文集，pp. 183–186, 2000
5) 森 雅人、高橋 弘、逢坂 昭治、塚井 清之、片岡 邦、石井 知征、小谷 謙二：古紙破砕物と高分子改良剤を用いた新しい高含水比浮土リサイクル工法の提案と繊維質高分子処理土の強度特性、資源・素材学会誌，Vol. 119, No. 4–5，pp. 155–160, 2003
6) 藤井 國男、山口 浩一、久保井 徹、矢崎 仁也：合成集合アミドの土壌環境に与える影響（II）土壌中でのポリアクリルアミド誘導体の分解，国立公害研究所報告，第 14 号，pp. 21–31 (1980)
7) 読売新聞 2002 年 10 月 11 日付朝刊（海外で植林/環境配慮への取り組み/古紙リサイクル拡大/植物油使用エコインキ）
8) 服部 勉、宮下 清貴：土の微生物学 pp. 4–14, 2000, 醍醐書院
9) 大草 重康：粘土の不思議 pp. 38–39, 1994, 社団法人 土質工学会
10) 建設省土木研究所（現独立行政法人土木研究所），財団法人先端技術センター及び民間 22 社：建設汚泥の高度処理・利用技術の開発（盛土グループ）共同研究最終報告書 pp. 77–85