12. 路上工事渋滞縮減に向けた建設機械の要求性能

独立行政法人土木研究所 山元 弘 〇林 輝

1. はじめに

道路渋滞の軽減に向け、交差点立体化が推進されている。一方、路上工事が引き起こす渋滞の影響に対して厳しい目が向けられており、その縮減も喫緊の課題となっている。このようななか、路上工事渋滞をなるべく発生させないように交差点立体化工事の施工方法等を開発していく必要性が高まっている。

従来の工法による交差点立体化工事は、最低でも1〜2年の工事期間を必要とし、この間、工事中の交通規制・通行止めなどにより更なる渋滞の発生と周辺環境の悪化を招く恐れがあるため、渋滞が激しい交差点立体化工事の実施が困難となっている。

本研究では、交差点立体化工事に使用される建設機械に焦点を当て、路上工事期間の短縮や工事面積の縮小による渋滞軽減効果の評価方法について検討するとともに、建設機械の改良や技術開発を促進するための打設契約制度の動向等を踏まえ、路上工事渋滞の縮減に貢献する建設機械の要求性能についてとりまとめたものである。

2. 上工事の施工実態

2.1 上工事の施工状況実態分析

路上工事の施工状況実態について3件の現場を対象に工種、工程、施工状況の分析を行い、路上工事の工事渋滞要因の課題を抽出した。

(1) 各工事ともに、現有車線数を確保することを原則としているが、やむを得ず規制が伴う場合は夜間施工等にて対応している。

(2) 工事施工時の必要幅が不足するケースでは、歩道を切削し歩道幅員を縮小させることにより切廻し道幅員、作業帯幅を確保している。

2.2 渋滞要因の分析

実態分析、ヒアリングの結果から、路上工事の工事渋滞要因の分析をおこない課題を抽出した。また、建設機械の工夫による渋滞解消への可能性、方向性を検討した。

(1) 工事による主な渋滞要因

・作業帯が必要となり、車線、路肩帯幅が縮小されることにより、走行速度が低下する。

・限定された区間で車線の切廻しをするため、平面線形が劣る傾向があり、走行速度が低下する。

・右折車線を規制する場合、右折車両が直進車を阻害する。

・工事用車両が作業帯に出入りする際、走行車両を阻害する。

(2) 工事渋滞の課題と対応方法

これらの課題に対する、交通渋滞解消に向けた課題、対応方法を表-1に示す。

<table>
<thead>
<tr>
<th>課 題</th>
<th>対応方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>作業帯、長さを減らす</td>
<td></td>
</tr>
<tr>
<td>構造物等の撤去が可能な箇所で規制車線の一部を撤去する。設計段階で規制が出せないように十分検討するとともに、建設機械の小型化を図る。</td>
<td></td>
</tr>
<tr>
<td>規制時間を短縮する</td>
<td></td>
</tr>
<tr>
<td>効率的な作業ができるよう、建設機械の組み立て、解体のスピード化を図る。</td>
<td></td>
</tr>
</tbody>
</table>

3. 建設機械に由来する工事渋滞要因

建設機械の使用期間が工期に占める影響を分析調査するとともに、建設機械に由来する工事渋滞要因・課題について機種毎に抽出した。また、渋滞発生要因毎の交通渋滞抑制への寄与度を分析し、寄与度が大きく対策が必要なものを取り出した。建設機械の抽出は、「工期短縮」と「省スペース」の2つの観点から整理した。表-2に建設機械が及ぼす渋滞影響度を一覧示す。

3.1 工期短縮に影響のある建設機械

工事工程の面から見た場合、基礎工および上部工架設工が全体工程に与える影響が大きいと考えられ、
表-2 建設機械が基盤工事に及ぼす影響度一覧

<table>
<thead>
<tr>
<th>建設機械名</th>
<th>順位</th>
<th>使用工事</th>
<th>影響度</th>
</tr>
</thead>
<tbody>
<tr>
<td>クラシカル</td>
<td>95t</td>
<td>基盤工</td>
<td>×</td>
</tr>
<tr>
<td>クラシカル</td>
<td>65t</td>
<td>基盤工</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下部工</td>
<td>×</td>
</tr>
<tr>
<td>クラシカル</td>
<td>30t</td>
<td>基盤工</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下部工</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td></td>
<td>上部工</td>
<td>×</td>
</tr>
<tr>
<td>3点式打設機</td>
<td>-</td>
<td>基盤工</td>
<td>0</td>
</tr>
<tr>
<td>トレッド機</td>
<td>-</td>
<td>基盤工</td>
<td>0</td>
</tr>
<tr>
<td>ドラックルッ</td>
<td>100t</td>
<td>上部工</td>
<td>0</td>
</tr>
<tr>
<td>ドラックルッ</td>
<td>100t</td>
<td>上部工</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>中央部</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下部工</td>
<td>0</td>
</tr>
<tr>
<td>自走型ジャッキ</td>
<td>-</td>
<td>上部工</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>中央部</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下部工</td>
<td>0</td>
</tr>
<tr>
<td>オリフィンロー</td>
<td>-</td>
<td>基盤工</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下部工</td>
<td>0</td>
</tr>
</tbody>
</table>

着色部：抽出した建設機械

3.2 作業スペースに影響を及ぼす建設機械

作業スペースの面から見た場合、大型建設機械（大型ドラックルッ、3点式打設機）等が工事経済要因となる可能性が高い。

4. 建設機械による交通渋滞抑制への寄与度分析

建設機械が技術開発等により工事経済要因に寄与できることを考える日数を全体工期（日数）からみた割合で表し寄与度と定義するとともに、交通経済要因への寄与度分析した。各ケースについて、機械改良前・後の割合受幅・幅員確保の割合および交通経済計算結果に基づき寄与度を求めた。

4.1 算出する寄与度

・ 規制日数短縮の寄与度

・ 幅員確保の寄与度

・ 交通容量確保の寄与度

4.2 寄与度の試算ケース

性能向上が工事経済要因に寄与できると考えられる3種類のケースについて寄与度を算出した。表-3に寄与度の試算ケースを示す。

表-3 寄与度の試算ケース

<table>
<thead>
<tr>
<th>ケース</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE1</td>
<td>上部工の地盤工において、自走3点打設機、油圧ジャッキのストローカ性能を向上させ、工期間経済を改善させたケース。</td>
</tr>
<tr>
<td>CASE2</td>
<td>基盤工において、3点式打設機の全体、解体の簡素化、迅速化および、打設能力向上または製品ラインナップ充実による上位能力機械の使用によって、工期間経済を改善させたケース。</td>
</tr>
<tr>
<td>CASE3</td>
<td>上部工の地盤工において、規制時間帯に影響を与える100tドラックルッの性能を落とす小型化したケース。</td>
</tr>
</tbody>
</table>

4.3 試算結果

表-4に寄与度の試算結果を示す。

表-4 寄与度の試算結果

<table>
<thead>
<tr>
<th>ケース</th>
<th>規制日数短縮</th>
<th>幅員確保</th>
<th>交通容量確保</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE1</td>
<td>10.3</td>
<td>5.8</td>
<td>5.6</td>
</tr>
<tr>
<td>CASE2</td>
<td>6.0</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>CASE3</td>
<td>6.7</td>
<td>3.9</td>
<td>3.7</td>
</tr>
<tr>
<td>CASE4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>CASE5</td>
<td>0.0</td>
<td>8.3</td>
<td>6.4</td>
</tr>
<tr>
<td>组合せ</td>
<td>全体工期</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

注：組合せの相手3つのケースを1工事に適用させて交通容量確保の寄与度を算出しているため、工種の複数が組み合わす工の組合せの合計値とは一致しない。

4.4 寄与度についての考察

寄与度計算結果から、自走移動台車、油圧ジャッキ、杭打ち機の性能向上、ドラックルッの小型化等が渋滞解消に寄与することとなった。

各々のケースについて、例えば全体工事の交通容量確保の寄与度をみて4.3～6.4%と少ないが、組合せすることにより9.7%となる。このため、1つの工種からみた微小な結果としても、工期短縮、スペース縮小への取り組みは重要である。
5. 建設機械メーカーの動向

建設機械メーカーに対し、建設機械に求められている施設解消に貢献する性能やその実現の可能性、及び問題点に関する聞き取り調査を行った。
（建設機械に求められている機能）
○3点式抗打機：リーダーの軽量化、リーダーの縮小、狭隘箇所での施工（リーダーのチルト機能、回転機能）、旋回範囲の縮小、安定性の向上、搬入搬出時の組み立て解体の簡易化
○トラッククレーン：本体のコンパクト化、旋回範囲の縮小、アウトリガージャッキストロークの向上（増大）、据え付け時簡易化
○自走多軸台車：低価格化、自己昇降ストロークの向上、搬入時の組み立て（架台含む）の簡易化、走行性能の向上（空車時）、操作の簡易化、自己昇降設備のストローク向上、操作の簡易化、走行時の安定性向上
○油圧ジャッキ：低価格化、ストロークの向上、昇降荷重の増大。

6. 路上工事砂防削減を目指した建設機械の要求性能

立体交差化に向けた路上工事砂防削減を目指した建設機械の要求性能の代表的事例を示す。

6.1 工期短縮を目的とした建設機械の開発

(1) 3点式抗打機のリーダーを組立式から伸縮式や折畳式に改良し、機械組立工期の短縮する。
【対象機種：リーダー長21m以上、目標工期搬入・組立1日短縮、解体・搬出1日短縮】

(2) 自走式多軸台車のジャッキストローク向上による枠台組立工期の短縮【目標工期短縮：10%短縮】

図-2 自走多軸台車のジャッキストローク向上例

6.2 正規工の縮小を目的とした建設機械の開発

(1) 三点式抗打機の小型化等による旋回範囲の縮小【対象機種：リーダー長21m以上、縮小目標50cm
（1車線当たり普通車換算交通容量150台/增加）】

図-3 3点式抗打機の小型例化

(2) トラッククレーン小型化等による旋回範囲の縮小【対象機種：100t〜200t トラッククレーン、縮小目標：50cm（1車線当たり普通車換算交通容量150台/增加）】

図-4 トラッククレーンの小型化例

以上の要求事項に対して、実現可能であると考えられる項目を抽出すると表-6となる。
表-6 抽出した建設機械における課題

<table>
<thead>
<tr>
<th>機械名称</th>
<th>開発箇所</th>
<th>今後必要な開発</th>
<th>開発による効果</th>
<th>寄与度</th>
<th>開発に対する問題点</th>
</tr>
</thead>
<tbody>
<tr>
<td>自走多軸台車（ジャッキ）</td>
<td>ジャッキ</td>
<td>ストロークの向上</td>
<td>自走多軸台車上に組み立てる架台省略 【工期短縮】</td>
<td>規制日数削減 6.0%</td>
<td>市場規模に対するリスクや開発コストの回収が課題となる。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>畳貯員確保 3.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>交通容量確保 3.4%</td>
<td></td>
</tr>
<tr>
<td>3点式杭打機</td>
<td>リーダー</td>
<td>テレスコタイプや折り畳み式に変更</td>
<td>組立・解体時間短縮 【工期短縮】</td>
<td>規制日数削減 0.5%</td>
<td>市場規模に対するリスクや開発コストの回収が課題となる。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>組立・解体ヤード縮小 【省スペース】</td>
<td>畳貯員確保 0.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>カウンター</td>
<td>小型化等による旋回半径の縮小</td>
<td>施工ヤードの縮小 【省スペース】</td>
<td>規制日数削減 0.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ウエート</td>
<td></td>
<td></td>
<td>畳貯員確保 8.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>交通容量確保 6.4%</td>
<td></td>
</tr>
<tr>
<td>トラッククリーチェーン</td>
<td>カウンター</td>
<td>小型化等による旋回半径の縮小</td>
<td>施工ヤードの縮小 【省スペース】</td>
<td>規制日数削減 0.0%</td>
<td></td>
</tr>
</tbody>
</table>

7. まとめ
これまで、建設機械メーカーは、工事従事者のニーズに応じて様々な開発やラインナップの充実を行ってきたが、道路利用者のニーズである「現道交通の渋滞を軽減させる建設機械」という視点からの研究、開発は、実際にはあまり取り組まれていていない。

本研究ではこれらの取り組みを促進させるため『立体交通化に向けての路上工事渋滞削減を目指した建設機械の要求性能（案）』としてとりまとめ建設機械業界に提示することである。

今後、国民からの路上工事に対する目は、ますます厳しくなると考えられ、工事実施に向けては、これまで以上に研究、開発成果を生かした路上工事渋滞の削減が必要である。また、これらの技術開発を促進させる上でも、新技術や新工法などを適性に評価でき、それらに対してインセンティブを与えるような新しい入札・契約方式への取り組みや、技術開発に対するリスクを分散させるなど、技術開発を行いやすい土壌を育成していいく必要がある。

(参考文献)
1) 社団法人 日本道路協会：「道路の交通容量」、昭和59年9月
2) 道路使用実務研究会：「新しい道路使用の手引き」、警視庁交通部交通規制課、平成11年2月

- 62 -