31. 油圧ショベルによる掘削作業の自動制御技術に向けた研究

掘削事象に応じた動作計画構築のための基礎データ採取

○ 茂木	正晴
藤野	健一
大槻	崇
邵	輝
	 茂木 藤野 大槻 邵

1. はじめに

土木工事における危険・苦渋作業を解消するこ と、自動化による施工の効率化と品質向上を図る ことや若年労働者や熟練オペレータ不足への対応 を目的に、遠隔からの簡単な作業指示により、自 律した施工を行うロボット建設機械(油圧ショベ ル)を用いた I T施工技術の研究開発を行うもの である。

現在までに研究・開発されたプロトタイプは、 自動制御を行うための要素技術として、IT 施工の 操作システム、施工状況の3次元情報を計測する システム、自動制御システムから構成されており、 限定されたフィールド内での掘削・積込作業の自 動化を実現させた。

しかし、現在までの検証実験では、土木研究所 構内での比較的掘削の容易な土質条件(関東ローム)での検証であったため、当初想定している災 害現場での復旧(地震・降雨等による土砂災害、 火山による災害)に必要な多様な土質、掘削条件 に100%対応できるものとなっていない。

そのため、将来的に現場での適用を想定した場 合、現行の自動制御では事象の変化に対応するこ とが難しいと思われる。

そこで、油圧ショベルの姿勢及び動作方向をパ ラメータとして、掘削にかかる荷重とバケットリ ンクにかかる歪みの関係を実験で明らかなものに し、今後、現場での様々な事象(障害物等)に対 応した動作計画構築のための基礎データを採取し た。

2. 研究内容

本研究では、研究・開発されたプロトタイプを 利用し、掘削にかかる荷重とバケットリンクの歪 みの関係等を明らかにすることにより、掘削時に 障害となる岩塊、地盤の固さ、礫、コンクリート などの事象に対応した、動作制御計画を生成する ことを目的とした基礎実験を行った。

写真-1 プロトタイプの全景

2.1 実験の概要

本実験は、油圧ショベルの掘削にかかる荷重を 推定することを目的に油圧ショベルの姿勢及びバ ケットの動作方向をパラメータとして、掘削荷重 とバケットリンク歪みの関係を求めたものである。

具体的な手法としては、油圧ショベルのバケッ ト先端に作用する垂直・水平荷重をロードセルで 計測する荷重実験とプロトタイプの動作計画を利 用した掘削時におけるバケットリンク歪み計測 (掘削実験)を行うこととした。

実験では、共通して図-1 に示すバケットリンク の圧縮引張歪み(掘削抵抗)を計測した。このリ ンクは、バケット油圧シリンダの変位をバケット の回転に変換するリンクで、バケットに掘削荷重 が作用する際に発生するリンクの歪みを計測した ものである。

荷重実験については、油圧ショベルのバケット 先端に作用する荷重をロードセルによって計測し た。荷重方向は鉛直(重力方向)と水平方向であ る。図-2に姿勢概念を示す。 掘削実験については、図-3 に示すような実掘削 に伴う歪みを計測とするとともにバケットリンク に作用する水平・垂直加重と油圧ショベルの姿勢 による掘削限界を実験により明らかにした。

図-1 歪みの測定位置

図-3 掘削実験の概要

2.2 実験内容

(1)荷重実験

荷重実験において、鉛直荷重実験では、図-4に 示すように盛土(反力板より1m)の上に油圧ショ ベルを設置し、ブーム操作でロードセルを下方に 押しつける操作を行った。荷重によって油圧ショ ベルの前方がピッチング(油圧ショベルの本体が 持ち上がる)した段階が荷重限界に達したものと 判断し、操作を終了した。

図-4 垂直荷重作用時の姿勢

写真-2 垂直荷重実験状況

水平荷重実験では、ロードセルを盛土(礫混じり土で造成)の鉛直面に立てた鉄板に置き。図-5 のように主としてアームで荷重を作用させる。こ の実験では、ロードセルの保護用に設置した木材 合板(厚さ40mm)にバケット先端爪が食い込む状態を荷重限界とした。

図-5 水平荷重作用時の姿勢

写真-3 水平荷重実験状況

垂直荷重及び水平荷重では、原則としてショベ ルのクローラ先端からバケットフートピン位置ま での距離を、最小値から 1m ピッチで、最遠距離ま でとした表-1 に示す実験ケースで行った。

実験条件		バケットフー	ートピン座標	バケット	ピッチ	- Е
		水平(mm)	垂直(mm)	角(°)	(°)	(°)
	0点					
	Cal					
	1m	1270	23	60.2	4.8	
水	1m	1320	182	61.9	4.7	
平	2m	2060	210	62.6	3.6	
	3m	2860	297	66.5	2.8	
	4m	4010	264	68.4	0.4	
	5m	4850	360	76.6	-0.7	
	2m	1880	493	-19.9	2.4	1.4
垂直	3m	2860	385	-34.9	2.6	1.3
	3m	3340	210	-49.2	2.8	1.3
	4m	4290	129	-44.0	2.7	1.3
	5m	4815	400	-82.6	2.9	1.2

表-1 荷重実験ケース

(2) 掘削実験

掘削実験については、バケット侵入角度、掘削 深さ、旋回中心からバケット先端部での距離をパ ラメータとして、表-2に示すような実験ケースに より掘削時に発生する掘削荷重をバケットリンク の歪みから推定する方法について検証した。

本実験における掘削条件としては、予め設定する2点間(のり掘削の始終点)を既存の動作計画 制御プログラムを用いて実施しており、掘削速度 は、自動掘削(粗掘削)時に設定されている0.4km/h にて行った。

写真-4 掘削実験時の姿勢

写真-5 掘削実験状況

表−2 掘削実験ケース

掘削開始距離	5.0m			5.0m 5.5m			6.0m				6.5m				7.0m										
バケット角度	50	60	70	80	90	50	60	70	80	90	50	60	70	80	90	50	60	70	80	90	50	60	70	80	90
掘削深さ設定		1.0m																							

3. 実験結果

(1)荷重実験

図-6,7 に荷重と歪みの関係を示す。図中の回帰 式は、切片を0とした場合の回帰式である。図(代 表例)に示すように全ての実験事例で比例関係を 確認することが出来た。

図-6 垂直掘削抵抗

図-7 水平掘削抵抗

図-8,9は、油圧ショベルの姿勢(バケット位置) と荷重-歪み間の勾配との関係を求めたものであ る。図から水平荷重時には距離に関係なく掘削抵 抗と歪みには一定の関係があることが分かった。

垂直掘削の場合、水平距離が長くなるほど勾配 が大きくなる傾向を示す。これは、水平掘削では バケット角度に大きな変化がないのに対し、垂直 掘削では距離によってバケット角度が変化するこ とが原因と考えられる結果となった。

図-8 水平距離と垂直掘削抵抗の勾配係数

図-9 水平距離と水平掘削抵抗の勾配係数

(2) 掘削実験

表-2 に基づくケースによって、実施した掘削実 験では、掘削荷重をバケットリンク角度、掘削開 始距離をパラメータとしてバケットリンクの歪み と実掘削状況から推定するとともに、荷重実験に よって得られた結果を掘削実験結果に利用して、 掘削限界で発生している荷重を明らかにするもの である。(図-10)

図-10 実験時のバケット角度

実験の結果、表-3 に見られるように掘削可能な 領域は、掘削開始距離が 5.5m~6.5m、バケット角 度 80°~90°が掘削可能領域という結果が得られ た。

表-3 に示す掘削可能領域及び不可領域を大きく 分類整理するとバケットの姿勢、掘削開始距離に より図-11 に示すような現象が見られた。図-11 1) については、目標とする掘削軌跡 A-B において掘 削作業が可能な姿勢におけるバケットの状態を示 したもので、バケット底部の接圧若しくはバケッ ト内部に堆積する掘削土による荷重によって作業 が停止したものである。

一方、図-11 2)は、目標とする掘削軌跡 A-B に おいて掘削作業が不可能となる姿勢におけるバケ ットの状態を示したもので、掘削に必要な荷重が 得られずに作業停止となった。

バケット角	度	50	60	70	80	90					
掘削開始距離	5.0m	×	×	Δ	Δ	0					
	5.5m	×	×	Δ	0	0					
	6.0m	×	×	Δ	0	0					
	6.5m	×	×	Δ	0	0					
	7.0m	×	×	Δ	Δ	0					

表-3 掘削可能領域

○:掘削可能な状態 △:バケット底面が地盤圧接等による掘削停止

×:掘削不可能な状態

図-11 掘削状況

写真-6 掘削可能な状態

写真-7 バケット底部に発生した接圧によって停止

写真-8 掘削に必要な荷重が得られない状態

4. 考察

荷重実験によって、掘削時の各種姿勢とバケッ ト角度における掘削荷重とフートピンにかかる歪 みを計測し、検証の結果、掘削荷重-歪みに相関 があるものと判断できる。

この結果、実際の掘削実験において計測した歪 みを荷重に換算し、「土が硬い、何か障害物がある」 といった状況時に独自の荷重変化が現れ、掘削限 界になると停止する状況の変化を観測することが できた。これを利用して、発生する歪みの挙動か ら「土が硬い、何か障害物がある」といった状況 をイベントとして位置付けし、別の動作に移行す るシステム構築の考え方(アルゴリズム)が整理 できるものと考えられる。

図-12 システム構築の考え方

また、掘削実験によって得られた知見として、 歪みをバケット先端の垂直、水平荷重に換算した 図-13,14に示すグラフは、掘削時にバケット底面 に接圧が発生したために作業停止となった状況を 角度毎に示したものである。(CASE6.0m)

図-13 に示すように、バケット先端角度によって、 それぞれの水平移動距離で荷重の変動が見られた。

特にバケット先端角度 70°では、5,200mm 付近 での変動あるが、この変動については、実験時の 目視での確認でバケット底面の地盤との接圧によ るものと考えられたが、その後、図-15の掘削軌跡 に示すように停止せず掘削が継続されたこ。これ は、他のバケット先端角度においても同様な現象 として捉えられた。図-14 は、バケット先端の水平 荷重を示したものであるが、荷重に大きな変動が 見られないことから、水平時における荷重変動障 害の要因となるものがないと考えられる。

本実験における停止現象は、荷重変動後に図-15 のバケット先端軌跡に示すように、更に掘削作業 が継続されていることや、掘削時におけるバケッ ト先端の軌跡をみると水平方向と深さ方向(Z軸) が、ほぼ比例関係になっていることから、土質の 崩壊、せん断、滑り等の発生によるものが、要因 となったと推測される。

図-13 リンクに作用した垂直荷重

図−15 バケット先端の軌跡

5. まとめ

本研究では、荷重実験と掘削実験により、油圧 ショベルの姿勢及び掘削動作時のパラメータとな る掘削抵抗とバケットリンクの歪みの高い相関関 係を明らかにした。

掘削作業において、荷重の計測を歪みに置き換 えることで様々な現場での事象に対応した動作計 画構築が可能になるものと考えられる。

また、掘削時の接圧による現象として、土質の 崩壊、せん断、滑り等を考察(もしくは、バケッ ト内部に堆積する掘削土による荷重)しているが、 この現象を更に解析し、その成果を反映した物理 モデルの構築が事象に対応した動作計画構築にお いて必要になるものと思われる。

今後は、動作計画の構築を行ううえでの物理モ デルの作成と併せて、他の動作パターンにおける 相関等について実験による検証を行う必要がある。

参考文献

- 1) 茂木正晴・山元弘・大槻崇・邵輝:土木技術資料/第51 巻6号,2009.6
- 2) 山元弘・邵輝・茂木正晴・大槻崇・柳沢雄二・野末晃・ 境田右軌・山口崇:油圧ショベルによるIT施工システム に関する研究,建設施工と建設機械シンポジウム論文集 , pp.5~10,2008.10
- 3) 山元弘・柳沢雄二・野末晃・邵輝・境田右軌・山口崇: 油圧ショベルの自律化に向けた基盤技術について,建設 ロボットシンポジウム論文集, pp243.~252,2008.9
- 4) 境田右軌・山元弘・邵輝・野末晃・柳沢雄二:熟練オペレータによる油圧ショベルの掘削操作解析,建設ロボットシンポジウム論文集,pp263.~270,2008.9