4. 市街地や構造物近傍での液状化対策を可能とした

静的締固め砂杭工法の開発

1. はじめに

比較的緩い砂質地盤に強い地震動が作用すると 液状化現象が発生し、構造物に甚大な被害をもた らす。新潟地震,兵庫県南部地震,新潟県中越地 震,近年では東北地方太平洋沖地震などにおいて も大きな液状化被害が発生している。

液状化を防止する有効な方法のひとつは、緩い 砂質地盤を締め固め、密度の増大を図ることであ り、その代表的な地盤改良技術が大型振動機を用 いて地盤中に締固め砂杭を造成するサンドコンパ クションパイル工法(以下、SCP工法)であった。 しかし、近年、市街地や構造物近傍における施工 の需要が増加し、前述した振動式のSCP工法では このような現場への適用が困難となり、振動式 SCP工法と同等の改良効果を有しつつ低振動・低 騒音で施工が可能な工法の開発が必要とされた。

本論文では、大型振動機に代えてオーガモータ ーを使用し低振動・低騒音で施工できる締固め砂 杭工法の開発と、実施工における改良効果の検証 について報告する。

2. 工法概要

2.1 使用機械

写真-1 に施工機械の全景を示す。施工機はクロ ーラ式サンドパイル打機をベースマシンとし,前 装備には CP 貫入・引抜用に下部オーガモーター (45kW×2), CP 管内の改良材排出・締固め用に 上部オーガモーター (90kW×1),その下部に CP (φ508mm)が装備され,先端部には上部オーガ モーターと鋼管で接続されたインナースクリュー を有する。CP の貫入・引抜には施工機の油圧ウイ ンチにより貫入・引抜方向の張力をワイヤーを介 して付与する構造としている。

2.2 造成メカニズム

締固め砂杭は,規定深度まで CP を貫入後, CP 内に充填した改良材を CP 内部に設置されたイン ナースクリューの回転により地盤中に強制排出す ることで造成する。なお,改良材については砂・

日本海工株式会社	○ 篠井	隆之
株式会社熊谷組	森	利弘

写真-1 施工機械全景

スラグ・再生砕石 (RC-40)・再生砂など多様な材 料が使用可能である。

造成メカニズムの概要を図-1 に示す。まず CP 内に充填された改良材はインナースクリューの回 転により強制的に地盤中に排出・拡径締固めされ る。この排出を確認しつつ CP を回転させながら引 抜を開始する。インナースクリューと CP は独立駆 動しているため,③の最終締固め時には状況に応 じて CP の回転を停止させることで回転の相対速 度に変化を与え、改良材の排出効果を高める。造 成時における改良材の排出量は、CP 上部に設置し たレーザー距離計で管内砂面を計測し、常時管理 しながら締固め砂杭を造成する。

2.3 施工手順

施工手順の模式図を図-2 に示す。まず CP をあ らかじめ測量した打設位置に誘導し,原地盤の混 入防止として CP 内に改良材を充填した後, CP を 回転させながら規定深度まで貫入する。

図中①~③の工程は締固め砂杭 1m の造成を示 すもので、その詳細は前項の図-1 に示したとおり である。杭頭深度までの造成は上述した①~③の 工程を繰返すこと、つまり図中の STEP 施工部分 により造成される。この間、CP 内にある改良材は 材料面検出用のレーザー距離計によって常時計測 されており、1m の造成に対して改良材の不足が生 じる場合は事前に CP 内へ改良材を補給する。

2.4 施工管理

施工は CP 先端深度と CP 内材料面高さの計測に 基づいた締固め砂杭造成 1m ごとの材料使用量に ついて管理する。CP 先端深度の計測は CP 移動記 録用ワイヤーを介したセルシン変換機により, CP 内材料面高さの計測は CP 上部に設置したレーザ 一距離計により計測する。

写真-2 にレーザー距離計を示す。通常、SCP エ 法における CP 内の材料面の変動は CP 上部より吊 り下げた重錘を上下させることで計測するが,機 構上,トラブルが発生しやすい。一方,本工法で 使用するレーザー距離計は CP 上部から材料面に レーザーを照射し,その反射光を検出することで 材料面の変動を計測するため,上述した重錘によ る計測で発生するトラブルは皆無である。また,施工中の材料面計測時における重錘の上下操作が 必要ないなどの利点がある。

計測された CP 先端深度と CP 内材料面の変動は 操作室の施工管理システムで処理され,その状況 はオペレーションモニターに表示される。この情 報を基に造成した締固め砂杭のデータは施工管理 システムに記録され,オシログラフの施工記録デ ータの基となる。写真-3 にオペレーションモニタ ーを示す。

写真-2 レーザー距離計概要

写真-3 オペレーションモニター

3. 実施工における検証

本工法が従来の振動式 SCP 工法と同等の改良効 果を有することの検証として,施工後における締 固め砂杭の出来形および砂杭間における地盤強度 の増加の確認を行った。また,開発目的である低 振動・低騒音の地盤改良工法であることの検証と して振動・騒音計測を行い,振動式 SCP 工法と比 較した。

3.1 出来形確認

写真-4に出来形平面および断面を示す。地表面から 2.5mの深度(GL-2.5m)まで地盤を掘削して形状を確認したところ,平面・断面共に設計径である φ 700mm を確保していることが分かった。

写真-4 出来形平面および断面

3.2 地盤強度増加の確認

本工法で造成される締固め砂杭は振動式 SCP 工 法と造成杭径が同径であり,材料使用量について も差異がないため,振動式 SCP 工法と同等の締固 め砂杭が造成されると考えられる。しかし,造成 メカニズムが異なるため,改良効果の検証として 原地盤の細粒分含有率(F_c)ごとに分類した杭間 強度の比較を行った。

図-3 は参考文献¹⁾中にある F_c が杭間 N 値に及ぼ す影響を示した図に本工法の施工実績を加筆した もので、横軸に F_c ,縦軸は式(1)に示すように有効 上載圧(σ'_v)によって基準化した杭間 N 値(N_1) を用いている。

ここで N_1 :基準化したN値N:N値 σ'_v :有効上載圧 (kN/m^2)

図-3 より, F_eに関係なく振動式 SCP 工法とほぼ 同じ杭間 N 値が得られており,振動式 SCP 工法と 同等の改良効果が得られていることが分かった。

3.3 振動・騒音の計測

図-4に振動式SCP工法と本工法との振動レベルの比較,また,図-5に騒音レベルの比較を示す。

振動・騒音レベルは、ともに振動式 SCP 工法を 大きく下回り、振動レベルにおいては施工機の CP 貫入地点より 2m,騒音レベルについては 5m の地 点においても特定建設作業規制基準の規制値を下 回ることが確認できた。

4. 設計法

施工に先立ち,地盤中または地盤上に構築され る各種構造物に応じた要求性能を満足する地盤改 良仕様を設計する必要がある。

改良効果の推定方法として地盤の F_cを考慮した 設計法(方法 C)が長く使用されてきたが,近年 では SCP 施工に伴う地盤の体積変化も考慮した方 法 D²⁾も建築および土木分野で広く使用されるよ うになっている。本報告では本工法の両設計法に 対する適用性を検証した。

4.1 方法 C および方法 D

地盤改良の推定方法として一般的に使用されて きた方法 C は、地盤改良後推定 N 値を改良前 N 値、 F_c、置換率 (a_s)から推定しており、砂杭の施工後 に地盤の盛り上がりが発生しないことを前提とし ているが、方法 D では砂杭施工後の地盤の盛り上 がりを考慮し、その盛上り土量を地盤の F_cと関連 付けることで改良後地盤の間隙比および相対密度 について評価する設計法である。図-6 に両設計法 における地盤間隙比の考え方を示す。

4.2 実施工との比較

図-7に施工後の標準貫入試験による杭間N値お よびオートラムサウンディング試験による換算杭 間N値と、方法Cによる計算杭間N値との比較, 図-8に方法Dによる計算杭間N値との比較を示す。 全体的に方法Dによる計算N値が方法Cの計算N 値に対して若干大きな値を示しているが、両設計 法による計算N値と実測値がほぼ45度線上にプロ ットされており、両設計法が本工法に適用可能で あることが分かった。

5. おわりに

本工法は振動式 SCP 工法と比較して施工実績が 乏しく,データ量も十分とは言えない。今後は幅 広い分野で施工実績を積み重ね,各種データの収 集・分析を行うことで本工法を成熟させたいと考 える。

図-7 方法Cによる設計値と 実施工後試験値による杭間強度比較

実施工後試験値による杭間強度比較

参考文献

- 原田健二、石田英毅;大地震における建築構造物の締 固めによる直接基礎改良地盤の評価に関する実証的研 究(実務に見る地盤改良工法の技術的諸問題(社団法 人日本建築学会)pp.93~98 1999))
- 2) 打戻し施工によるサンドコンパクションパイル工法設計・施工マニュアル(社団法人地盤工学会 pp.96~101 2009)