30. タワークレーン用制震装置の開発

(㈱竹中工務店 大阪本店 作業所 〇竹内誠一(㈱竹中工務店 技術研究所 菅田昌宏)

1. はじめに

タワークレーンは、超高層建物の建設に欠か すことのできない工事用機械である。しかし、 1995年に発生した兵庫県南部地震において複数 のタワークレーンが倒壊し、建物の施工中にお けるタワークレーンの耐震性確保に関する問題 点が高梨らによって指摘されている¹⁾。さらに、 タワークレーンは比較的周期が長く柔らかい構 造であるために揺れやすく、特に大地震時には 建物と共振して大きな揺れが生じ、クレーン自 体に損傷が生じる可能性があることが指摘され ている¹⁾。

このような状況のもと、東南海・南海地震が 近々発生し得ることが予見されている。しかし、 大地震を想定したタワークレーン用の免震・制 震装置は、十分には実用化されていない。よっ て、大地震時にタワークレーンが倒壊して作業 所のみならず近隣等第三者にも被害を与えない ようにするためのタワークレーン用免震・制震 装置の実現が望まれる。

そこで,建物の固有周期とタワークレーンの 固有周期が合致するような場合であっても,地 震によるタワークレーンの揺れを低減して過度 な損傷を防止する,マストクライミング方式の タワークレーンに有効な,油圧ダンパを利用し た汎用性の高い,タワークレーン用制震装置を 新たに開発した。そして、開発した装置を,建 設中の作業所に設置されたタワークレーンに試 適用し,実際に制震効果が得られることを確認 したので、以下の報告する。

2. タワークレーンの強度

タワークレーンは,法令上定められている強 度を有している。しかし,1995年の兵庫県南部 地震では,実際に複数のタワークレーンが倒壊 した(写真-1)。

タワークレーンの設計は、「クレーン構造規 格」(労働省告示)に基づいて行われている。同 規格では、「垂直静荷重の20%に相当する」水平

写真-1 倒壊したタワークレーン

荷重(静荷重),つまり,震度5強程度の地震が 発生した際に生じる水平荷重に耐え得る強度を クレーンに求めている。対してクレーンメーカ は,合理的且つ経済的に設計を行っているので, タワークレーン本体は,地震に対し過剰な余力 を有していない。よって,同規格では想定して いない震度5強より大きな地震の発生時には, タワークレーンが損壊して倒壊する可能性があ る。また,建物上部に設置されたタワークレー ンや,建物とステー(壁つなぎ)によって連結 されたタワークレーンは,建物の固有周期とタ ワークレーンの固有周期が合致して共振を起こ し,地震の大きさに限らず大きな揺れが生じ, タワークレーン自体に損傷が生じる可能性があ る。

3. 制震装置(ダンパステー)を組み込んだ制 震システムの概要

本装置を組み込んだ制震システムの構成と, 制震効果が得られる仕組みを示したものが図-1 である。

本システムの特徴は、制震装置(ダンパステ ー)を固定式ステー(マストクライミング方式 で通常使用される固定式のステー)とマスト脚 部間(図-1の左図)、もしくは固定式ステー間(図 -1 の右図)に配置し、同部位に生じるマストの 変形を利用してエネルギ吸収を行う点にある。 固定式ステー部において、タワークレーンのマ ストと躯体とがピン接合されており、ダンパス テー部では図-2 に示すような油圧ダンパが配置 されたダンパステーによって、マストと躯体 (柱)とがピン接合されている。固定式ステー による適度な拘束により、ダンパステー部分に 生じる変位量が適切に抑制されるため、ダンパ に極端に大きなストロークを必要としないこと が特徴である。

図-1 制震システム概要

図-2 ダンパステー概要(平面)

4. 制震装置(ダンパステー)の概要

制震装置(ダンパステー)のダンパ周りの詳細を,図-3に示す。ダンパステーは,固定式ステーの中間ステー(鋼管部)端部にオイルダンパを設置したものである。使用したオイルダンパは,カヤバシステムマシナリー製の汎用品で

ある。その主な仕様は,最大減衰力 500 k N (30 カイン),ストローク±100mm である。

固定式ステーとダンパステーの全景を,写真 -2及び写真-3に示す。ダンパステーは,固定式 ステーの軸部の一部を油圧ダンパに置き換えた 仕様とし,固定式ステーと完全に互換できるも のとしている。そのため,ダンパステーを設置 するために特別な取り合いを考える必要はなく, ダンパステーの汎用性は非常に高く,如何なる タイプのマストクライミング型タワークレーン にも適用可能である。

図-3 ダンパ周り詳細

写真-2 固定式ステー

写真-3 ダンパステー

5. 検討対象の建物の概要

本装置を試適用した建物は、大阪市に位置す る最高高さ 300m,地上 60 階建ての超高層ビル である(写真-4)。

写真-4 検討対象の建物

6. 検討対象のタワークレーンの概要

検討の対象となるダンパステーを試適用した タワークレーン(写真・4 矢印部)は、38 階にそ の基礎を持ち、マストクライミング方式によっ て38 階よりも上層階の躯体施工を行うために設 置されたものである。また、38 階よりも上の階 では建物内部に吹き抜け空間があり、当該タワ ークレーンはこの吹き抜け部に配置されている。 さらに、施工の進捗度に応じて図・4 に示すよう に、固定式ステーを必要としない自立時から2 箇所の固定式ステーを必要としない自立時から2 箇所の固定式ステーを必要とする第5 回目のク ライミングまで、合計6 つの状態を取るように 計画がなされている。最大マスト高さは105mで ある。本体頂部が躯体構築に伴って上昇し、マ スト部分は、固定式ステーによって躯体と連結 されている(写真-2)。タワークレーンのマスト

図-4 クライミング計画図

は高さが 3m ないしは 6m で、これらを高力ボル トを用いたフランジ接合によって緊結している。 表-1 に、各クライミング時のマスト高さ、固 定式ステー及びダンパステーの設置階,及びタ ワークレーンをモデル化する際の質点数と重量 を示す。ダンパステーは、2回目から5回目まで の各クライミングにつき 1 箇所配置した。表-2 に,使用したマストの断面性能等の諸元をまと めて示す。なお、ステー位置ならびにマストの 強度計算は,一般的な検討手法である「クレー ン構造規格」に基づいて行い、その安全性を確 認している。図-5 は検討対象のタワークレーン およびステーと躯体との位置関係を示したもの で、ステーは建物の主軸(X,Y方向)に対して 角度を有して柱とタワークレーンに緊結されて いる。

表-1 タワークレーンのモデル化

			タワークレーン		固定			
カライミンカド	躯体	躯体 マスト		モデ゛ル	取作	#*`\/^°		
回数	完了 階数	全 高さ	質点	総重量	上段	下段	取付階	
			数					
2回目	53F	63m	2	1180kN	50F	無	47F	
3回目	56F	75m	2	1270kN	53F	無	47F	
4 回目	59F	87m	3	1610kN	55F	47F	50F	
5 回目	P1F	105m	3	1700kN	58F	47F	53F	

表-2 マストの断面性能および適用位置

マストタイプ	A(mm ²)	I(mm ⁴)	Z(mm ³)	Z _p (mm ³)	W(t)	L	σ_{y}
M2000H	1.2	9.0	9.5	1.0	7	2.0	
M2000H	$\times 10^5$	$ imes 10^{10}$	$\times 10^{7}$	$\times 10^{8}$	/	5.0	
M2000	1.0	7.3	7.7	8.4	0.7	07 60	
M12000	$\times 10^5$	$ imes 10^{10}$	$\times 10^{7}$	$\times 10^{7}$	9.7	0.0	390
M1600	8.2	6.1	6.5	7.1	8.0	6.0	
	$\times 10^4$	$\times 10^{10}$	$\times 10^{7}$	$\times 10^{7}$	8.9	0.0	
M1300	6.5	5.0	5.3	5.8	05	6.0	
	$\times 10^4$	$\times 10^{10}$	$\times 10^{7}$	$\times 10^{7}$	0.5	6.0	

A:断面積, I:断面 2 次モーメント, Z:断面係数, Z_p:全塑性 断面係数

W:重量,L:マスト高さ(m), σ_v:材料の規格降伏強度(N/mm²)

図-5 タワークレーンの平面配置

7. 解析モデル

解析モデルの例を、図-6 に示す。これは、建 物構造設計時の地震応答解析用に作成された建 物の質点系モデルを基に、表-1 に示した各クラ イミング時の施工段階に対応した建物モデルと タワークレーンの質点系モデル(2もしくは3質 点)を組み合わせたものである。但し躯体の質 量は、施工時の状況を再現するため、設計で使 用した値に対して37 階以下については70%(躯 体+仕上・設備分を考慮)に、38 階以上で躯体 が完成している部分については65%(躯体分の みを考慮)に軽減した。

図-6 解析モデル例

タワークレーンマストは、1 本ずつモデル化し 表-2 に示す断面性能を有する曲げせん断棒によ って連結している。マスト重量は、マストの頂 部に集中していると仮定してモデル化した。な お本検討では、タワークレーンは無負荷で、か つ作業半径 22.4mで静止した状態を対象として いる。この状態でタワークレーン頭部(旋回体) の質量重心は、タワーマストの重心にほぼ一致 するので旋回体質量のマストに対する偏心は考 慮しおらず,ジブに関してもその質量のみを考 慮している。また,タワークレーン頂部(旋回 体)の重心位置は、マスト頂部位置よりも高い 位置(マスト頂部+6.26m)にあるため、マスト 頂部と旋回体重心位置(質量質点)を剛体連結 している。粘性減衰は建物およびタワークレー ンの双方ともに 2%とした。

前述したように,固定式ステーは建物主軸に 対して角度を有しているが,解析モデルでは各 主軸方向に集約した軸剛性および耐力を用いる こととした。表-3 に,解析で使用した固定式ス テーの軸バネ定数および耐力をまとめて示す。 ここで,固定式ステーの耐力は軸部鋼管のオイ ラー座屈によって定まる値である。

表-3 固定ステーの軸剛性および座屈耐力

	ХŻ	元向	Y 方向			
対象階	剛性 (kN/mm)	座屈耐力 (kN)	剛性 (kN/mm)	座屈耐力 (kN)		
58	363	2896	532	3728		
47-55	274	2579	465	2927		

表-4 油圧ダンパの特性(各階同じ)

方向	粘性減衰定数 (N·sec/mm)	最大減衰力 (kN)	内部剛性 (kN/mm)
X 方向	3.7	1109	307
Y 方向	5.3	1596	441

ダンパステーに使用した油圧ダンパは、ダッシュポットと内部剛性バネを直列に繋いだモデルとした。同ダンパは、最大減衰力 F=500kN が速度 v=30 カインで発揮される線形タイプで、粘性減衰係数 C_d は 1.6kN・sec/mm、内部剛性は 135kN/mm である ($F=C_d \cdot v$)。ダンパも上述した固定式ステーと同様、表-4 にまとめて示すよう に各主軸に集約した数値を解析に使用した。ダンパは、減衰要素と内部剛性バネを直列に接続したモデルとし、その両端を躯体柱とマストにピン固定している。

実施した地震応答解析はニューマーク β(=0.25)法を用い,躯体およびタワークレーンと もに部材降伏を考慮した非線形解析である。こ こでマストは,正規バイリニア履歴とし,降伏 後剛性は初期剛性の1/200とした。またステーは, 便宜的にマストと同様の履歴モデルとするが, ステーの降伏が生じた時点で,ステーの座屈に よってタワークレーンが損壊するという判断を 行うこととした。

8. 入力地震動

解析に使用した入力地震動の一覧を,表-5 に 示す。これらの地震動は,建物の構造設計時の 地震応答解析に使用したもので,当該敷地の条 件に合わせて作成されている。

衣 3 八刀地長期一見	表-5	入力地震動一覧
-------------	-----	---------

ل م گال	地雷動反称	最大速度	最大加速度		
	地展動名称	(mm/s)	(mm/s2)		
L3	東南海・南海 NS	268	1213		
	東南海・南海 EW	419	1067		
L2	南海 NS	210	863		
	南海 EW	275	987		

9. 解析結果

表-6 は,解析結果から求めたタワークレーン 頂部における応答加速度の低減率を示したもの である。低減率 α は(1)式によって求めた値であ る。

$$\alpha = (a_0 - a)/a_0 \times 100 \, [\%] \cdots \cdots \cdots \cdots \cdots (1)$$

ここで、*a*₀はダンパ無しの場合の頂部応答加速

度, aはダンパを効かせた場合の頂部応答加速 度である。同表によると、ダンパの効果により、 大きくは 62%の低減率を達成できた。

また表-7 に,表-5 に示した入力地震動におけ る,ダンパ無しの場合とダンパを効かせた場合 の解析結果から得られたタワークレーン各部の 強度検討結果を示す。これより,ダンパステー 無しの場合に強度不足となった部位が,ダンパ ステーを効かせれば応答加速度が低減され,作 用応力が許容応力内におさまることが判明した。

表−6 応答加速度の低減率 α (タワークレーン頂部)

	十百	地雷动友开	クライミング回数					
	万回	地辰到石朴	2回目	3回目	4回目	5回目		
L3	V	東南海南海NS	50%	56%	10%	23%		
	^	東南海南海EW	61%	47%	11%	58%		
	Y	東南海南海NS	57%	48%	20%	35%		
		東南海南海EW	62%	5 %	8 %	4 2 %		
L2	х	南海NS	53%	4 3 %	11%	8 %		
		南海EW	54%	38%	$2\ 3\ \%$	51%		
	V	南海NS	4 6 %	41%	- 3 %	24%		
	Y	南海EW	61%	24%	9 %	25%		

$\overline{\ }$						5	ワーク	レーン	各部強	食 実	定		
		地震動名称		ダ	ダンパス		テー無し		ダンパス		テー有り		
	\sim				ステー		マスト		ステー		マスト		
	=凸		Y古向	東南海·南海NS									
	武罟		773 [14]	東南海·南海EW									
	時		∨古向	東南海·南海NS									
	μŋ	1		東南海·南海EW	OK		or						
	1		Y古向	東南海·南海NS	OI		OIX						
			773143	東南海·南海EW									
			⋎方向	東南海·南海NS									
			1721-3	東南海·南海EW									
ク	2		Y古向	東南海·南海NS	NG	~ 日	NG	曲げ					
ラ	ライミング回数 4000000000000000000000000000000000000		773 143	東南海·南海EW	NG	庄庙	Nu						
イ			Y方向	東南海·南海NS	OK		OK						
Ξ		13	L3	東南海·南海EW	Ö		ÖR		全て		全て		
ン			X方向	東南海·南海NS	NG	座屈	NG	曲げ OK		ок			
グ				東南海 南海EW			1 G	шı,					
回			Y方向	東南海 南海NS			ок						
釵				東南海·南海EW									
			X方向	東南海·南海NS			NG	囲げ					
		Yħ		東南海·南海EW			ок						
	E		Y方向	東南海·南海NS									
				東南海·南海EW									
	5			X方向	果南海·南海NS				11 . 12				
				東南海·南海EW	NG	坐屈	NG	囲げ					
	E		Y方向	果用海·南海NS	ок		OK	-1L - 18					
		-	_	果 用 海· 南 海 E W			NG	囲げ					
4	5		X方向	用→→NS → × = × · · · · ·									
クライ	ミング	L2		南海EW またいの	全て		全て		全て		全て		
段	階		Y方向	南海NS → と=い	OK		OK		OK		OK		
10				南海EW									

10. 実機における効果の検証

2回目のクライミング時に,試験錘の揚重による加振実験を行った。結果,図-7に示すように, タワークレーン頂部の応答加速度は,ダンパス テーの働きによってより早く定常状態になるこ とがわかった。つまり,ダンパステーにより制 震効果が得られることを確認した。

また、ダンパステーを効かせた場合のタワー クレーン頂部付近にある運転室内における揺れ の収まり具合は、タワークレーンオペレータが 驚くほどであった。つまり今回開発した制震装 置は、地震時の揺れ(応答加速度)を低減する だけでなく、通常の運転操作時の揺れも低減す るので、運転操作のやり易さを向上させ、オペ レータのストレス低減にも貢献することが分か った。

図-7 ダンパ効果の実測 (タワークレーン頂部の応答加速度)

11. まとめ

大地震を想定した画期的なマストクライミン グ型タワークレーン用制震装置を開発し,建設 中の作業所に設置されたタワークレーンに試適 用し,解析及び実機による実験から制震効果が 得られることを確認した。本装置は汎用性が非 常に高いことが特徴である。また,今回開発し た制震システムについては,特許を出願済みで ある。

参考文献

高梨成次,安達洋,中西三和:建築用タワークレーンの耐震性能に関する研究,日本建築学会技術報告集,13 巻 26 号,pp.415~420,2007 年 12 月