11. 大規模造成工事での UAV 空中写真測量検証等の活用事例

西松建設株式会社	技術研究所	○ 原	久純
西松建設株式会社	技術研究所	佐藤	靖彦
西松建設株式会社	技術研究所	田中	勉

1. はじめに

近年では、UAV(Unmanned Aerial Vehicle)は建設 現場の状況確認¹⁾や橋梁・ダムの維持管理などで の利用が注目され、また、国交省の生産性向上を 目的として施策した「i-Construction」においても、 UAV を用いた空中写真測量の方法が示され、起工 測量や出来高・出来形管理における業務効率化が 期待されている。i-Construction では、土工事の全 面的な ICT 化を推進しており、起工測量や出来形 管理に UAV を活用して面的管理、3次元データの 生成を効率的に行うことを念頭に進められている。

UAV 写真測量の画像処理手法として,空中写真 から3次元点群データを生成するSfM(Structure from Motion)が用いられているが,UAV による写真 測量の実績はまだ少なく,その精度について不明 な点が多い。

本稿は、大規模造成工事を対象とした UAV によ る現場空撮及び空中写真測量事例を紹介し、その 有効性と測量精度や課題について検討した内容を 述べる。

2. UAV による現場空撮

現在,造成現場やダム現場等では,施工状況の 把握に UAV 空撮を活用し始めている。従来,地上 では定点写真の撮影や航空写真撮影を依頼して全 景写真を撮影していたが,安価な UAV を用いるこ とで空中全景写真を簡単に撮影できるようになり, 広範囲の造成現場では短時間での状況把握に有効 である。

2.1 空撮

図-1 に示す東西方向 600m,南北方向 600m の約 36ha の造成現場を対象として南北 800m×東西 1000m を外周しながら撮影した。

UAV は図-2 の DJI 社製 Phantom3 を使用し, 飛 行高度を 100m 維持しながら 15 分間手動操縦で飛 行した。UAV 実機及びカメラ諸元を表-1 に示す。

図-3,4は2015年10月,2016年3月に空撮し た写真である。施工範囲全域で盛土・切土箇所に よる起伏が半年経過することで全体的に起伏が小 さくなり、造成施工の進捗が一目で確認できる。 また、図-5 のように高度 100m 位置からバックホ ウなどの重機の稼働状況が把握できる。

図-1 UAV 空撮及び写真測量範囲

図-2 UAV 実機(Phantom3)

表-1 Phantom3 機体諸元

項目	概要
機種名	Phantom3 Advanced
機体形式	4発マルチローター
直径	290mm
機体重量	1.28kg
カメラ機種名	Sony EXMOR 1/2.3"
画素	4000×3000 pixel
シャッタースピード	1/8000 秒

3. 空中写真測量の精度検証試験

3.1 試験概要

本試験は空撮と同じ約36haの造成現場を対象として南北800m×東西1000mを撮影した。試験は2015年12月,2016年3月の計2回実施し,図-6の手順で行った。

3.2 使用機器

UAV による写真測量試験において,図-7のUAV を使用した。表-2にUAV,表-3に一眼レフカメラ 諸元を示す。

3.3 飛行計画

本試験では、1回当たり15分の飛行を複数回に 分割して自律飛行を行った。図-8 に飛行範囲全体 を網羅する飛行経路、表-4 に測量試験2回の飛行 条件を示す。飛行高度による測量精度の影響を確 認するため、飛行高度を100m、120mの2条件を 設定した。

図-3 UAV 空撮風景(2015 年 10 月)

図-4 UAV 空撮風景(2016 年 3 月)

図-5 現場重機の往来状況

図-6 写真測量試験フロー

図-7 UAV 実機(Ideorobo)

表-2 Ideorobo 機体諸元

項目	概要
機種名	Ideorobo
	X61000-2400
機体形式	6発マルチローター
機体直径	1100mm
重量	7.5kg
	(バッテリー、カメラ含む)

表-3 一眼レフカメラ性能諸元

項目	概要
機種名	Sony α 6000
画素数	6000×4000 pixel
シャッタースピード	1/1000 秒

図-8 飛行経路(2015年12月)

飛行時の安全管理として,飛行中に操縦者は, UAVのバッテリー電圧が半分以下・風速計で 6m/s を観測した場合,直ちに離陸地点へ帰還するよう 指示するためにモニター上で監視する。

	測量試験条件			
	1回目	2回目		
	(2015年12月)	(2016年3月)		
飛行高度	120m	100m		
飛行速度	12m/s	8m/s		
飛行回数	4 回	6 回		
飛行時間	60分	90 分		
撮影範囲	141×110m	118m×100m		
(1 枚当たり)				
撮影枚数	1601 枚	2326 枚		
オーバーラップ	70%	70%		
率				
サイドラップ率	70%	70%		

表-4 UAV 写真測量試験 飛行条件

3.4 試験準備及び写真測量試験

試験準備として、測量範囲に対空標識を設置し、 図-9のように対空標識の中心を GNSS 測量した。 対空標識は測量範囲の詳細な起伏を得るため、高 低差が大きい箇所又は測量範囲の外周等を選定し、 標識の間隔を 100m 以内となるよう設置した。また、 対空標識を測量解析に用いる標定点と用いない検 証点に分類し、図-10の 2015 年 12 月は標定点 19 点、図-11 の 2016 年は標定点 18 点及び検証点 2 点 設けた。

図-9 対空標識の GNSS 測量状況

図-10 1回目の対空標識位置(2015年12月)

図-11 2回目の対空標識位置(2016年3月)

3.5 測量解析

撮影写真からオルソ画像及び3次元点群データ を生成し、樹木など不要なデータをノイズ処理した。3次元データ生成にはSfMソフト「PhotoScan」, 3次元データのノイズ処理は点群処理ソフト 「TrendPoint」を用いた。PhotoScanによる点群デ ータ処理として、1回目の2015年12月は1~4回 の飛行写真を一括で処理し、2回目の測量写真2326 枚は一括処理に10日以上要すると予想されたため、 2回目の2016年3月は1~3回及び4~6回の飛行 写真を分割して並列処理を行った。

尚, 点群データ生成作業中に, 図-12 に示す点群 データの出力結果に空白箇所が残る課題が生じた。 原因として, 重ダンプ走路等の重機が往来する箇 所では, 重機の向きや地表面がたわみ変状し, 特 徴点が変化したことが影響したと考えられる。解 析時, 点群より TIN サーフェスを作成し, 空白箇 所を補間することで対応した。

図-12 2回目の点群データ出力結果(2016年3月)

3.5.1 測量作業時間

測量作業時間の比較として,現場の GNSS によ る出来高測量の作業時間を表-5,UAV 写真測量時 間の結果(2016年3月)を表-6に示す。表-5,6より 現地測量は GNSS 測量が 16時間に対して,UAV 写真測量は準備時間を含め 6.5時間であり,9.5時 間短縮し省力化が図れ,有効である。一方,今回 のUAV 写真データ処理では処理時間に120時間以 上を要したため,写真枚数が 1600 枚以上と多いこ とと特徴点の変化などの解析条件の影響と考えら れる。今後,飛行経路毎に分割・並列解析を行う などの対処が課題となる。

表-5 出来高測量作業時間

作業手順		所要時間(時間)
現地作業	GNSS 測量	16
データ処理	座標出力~ 土量計算	16
合計時間		32

表-6 UAV 写真測量解析作業時間

作業手順		所要時間(時間)	
現地作業	準備、撤去作業	5	6.5
	写真測量	1.5	(測量全体)
データ	点群データ作成	127	129.1
処理	ノイズ処理	2.1	(処理全体)
合計時間			137.6

3.5.2 測量精度の検証結果

本試験では, i-Construction 策定前の空中写真測 量精度検証として,オーバーラップ・サイドラッ プ率を 70%に統一し, 飛行高度を 100m, 120m に 設定することで、高度による測量精度の違いを検 証した.対空標識で測量した GNSS 座標を基準と し, 点群データの座標との差分を抽出した高度 120m及び高度100mの結果をそれぞれ図-13(a)、(b) に示す。図-13(a)、(b)より XYZ 座標の差分は高さ 方向の誤差はおおむね3cm,平面方向の誤差は6cm 以内であり, 高度 100~120m の測量精度は, 空中 写真測量を用いた出来形管理要領²⁾の要求精度± 5cm に近い値を示した。但し, 図-13(b)の検証点 No.1 の高さ座標が 12cm の誤差が確認された。誤 差の要因として、検証点 No.1 が飛行範囲を2分割 した境界に位置し,測量結果の端部としての歪み による影響と考えられる。

統計的な傾向を確認するため、代表的な標定点 17 点を用いた水平・鉛直座標より最大値,平均値, 標準偏差を表-7 に示す。表-7 より,水平・鉛直方 向において高度 100m で平均値及び標準偏差が小 さい傾向が確認され,高度を低くすることで,全 体的に座標の最大値及び平均値で 37%以上,標準 偏差で 44%以上の精度向上が図れた。以上のよう に,高度 100m において国交省の出来形管理基準を

(b) 高度 100m の差分結果 (2016 年 3 月) 図-13 飛行高度による UAV・GNSS 測量座標の差分比較

表-7	飛行高度	による	たっていた。ためで、ためでも、ためでも、ためでも、ためでした。	うの座煙	差分の	統計備
1. 1			ᇄᇨᇨᇭ	スマノナイホ	Æ / 1 V/	

		水平	鉛直
1回目	最大値(cm)	6.4	3.3
(高度	平均值(cm)	2.5	1.3
120m)	標準偏差	1.6	1.1
2回目	最大值(cm)	4.0	2.5
(高度	平均值(cm)	1.5	0.9
100m)	標準偏差	0.8	0.6
変化率	最大値(%)	-37	-24
(2 回目	平均值(%)	-38	-33
/1 回目)	標準偏差(%)	-50	-44

4. おわりに

本稿では、大規模造成工事現場において UAV に よる空撮及び写真測量を行い、写真測量ではオー バーラップ・サイドラップ率は一定とし、飛行高 度等の条件による測量精度と測量作業時間につい て検証した。本試験より、GNSS を用いた測量と 比較して、測量時間が大幅に短縮できることと高 度 100m において出来形要領の要求精度を確保で きることを確認した。一方、点群データ処理にお いて解析条件による長時間の解析時間等が生じる 場合があるため、解析時間を短縮化する手法等の 検討を進める予定である。

参考文献

- 和田章三,田中正人,岡本直樹:4D土工管理のマルチコプ タ運用,建設機械施工Vol.66,pp.39-45,2014
- 国土交通省:空中写真測量(無人航空機)を用いた出来形 管理要領(土工偏)(案), p.35,2016,