32. インフラ点検のための音波照射加振による高速非接触音響探査法

マルチトーンバースト波を用いた橋梁における検証

	佐藤工

1. はじめに

2012 年 12 月に発生した笹子トンネル天井板落 下事故がきっかけとなり、広く一般大衆にも我が 国の高度経済成長期に建設された多くのコンクリ ート構造物に対する維持管理の重要性が認識され るようになっている。コンクリート構造物表面の クラックや劣化の程度を調査する方法としては, 画像処理法, レーダ法, マイクを使用した打音法 など様々な手法が開発されているが,実際の点検 時には計測対象面に接触するか,ほぼ接触に近い 状態での計測が必要であり、いまだに目視点検と 叩き点検が主流であるというのが現状である。特 に叩き点検の場合には、点検時に足場や高所作業 車を必要とするという根本的な問題点を抱えてい る。そのため、遠距離から非接触かつ従来の叩き 点検と同等な検査が可能な点検手法の開発が期待 されるようになっている。

実際に、5m以上の遠距離から非接触で行える非 破壊検査手法としては赤外線カメラを用いた赤外 線法とパルスレーザを衝撃波源とするレーザリモ ートセンシング法 1-2)および本研究室で実施して いる音波照射加振とレーザドップラ振動計を用い た非接触音響探査法の三手法が現在存在している。 最初の赤外線法は基本的に温度の変化や分布を計 測する手法であり、原理的にもごく表面に近い亀 裂しか検出することはできない。屋外で使用する 場合は、日照等の環境条件に依存するほか、温度 変化の少ないトンネル内部等で使用する場合はヒ ータ等を使用してアクティブに加熱する必要があ り、高い天井部等での使用は困難であるという問 題点が存在している。次のレーザリモートセンシ ング法は、強力なパルスレーザによる衝撃加振を 利用した手法であり、基本的に金属材料の検査に は適した手法である。しかしながら、計測対象が コンクリートの場合には測定対象の融点が低い上 に,検出対象である欠陥の共振周波数も低いこと から, 効率的な振動励起を行うことはきわめて困 難である。すなわち、大電力を必要とする割には 振動エネルギーへの変換効率はきわめて低いため、

桐蔭横浜大学大学院	〇 杉本	恒美
桐蔭横浜大学大学院	杉本	和子
佐藤工業㈱技術研究所	歌川	紀之

出力を上げすぎるとコンクリート表面に孔を穿っ てしまうことになる。さらに、人体に影響がある 高出力レーザを複数使用することによる取り扱い の危険性の存在も課題となっている。一方で、著 者らが研究開発を行ってきた非接触音響探査法は、 従来の打音法と同様に欠陥部のたわみ共振を利用 した手法であり、極めてエネルギー効率が高くか つ安全な手法である。似たような手法として、ガ スガンによる圧力波^{3,4)}やラウドスピーカによる空 中放射音波 かを用いた手法も過去に提案されてき たが、当時はたわみ共振を利用した効率的な加振 法と S/N 比の高い計測法に関する検討が不十分で あったため、実際に 5m 以上の離隔における安定 的な計測を実現することは出来なかった。

実際に遠距離から音波照射加振によりたわみ共 振を効率的に発生させ、かつ S/N (Signal to Noise) 比の高い計測を行うには,加振用信号波形の工夫 およびそれに応じた信号処理の適用が必要となる。 著者らはこの一見困難に思われる課題を、トーン バースト波および時間周波数ゲートを用いること で克服した。実際に市販の低出力(1~10mW)のレ ーザドップラ振動計であっても 5m 以上の遠距離 において,従来の打音法とほぼ同程度の欠陥検出 が可能であることをコンクリート供試体や実コン クリート構造物(鉄道や道路のトンネル覆工およ び橋梁)を用いて明らかにしてきた 6-13)。さらに、 計測可能な時間帯を有効活用するマルチトーンバ ースト波を考案することにより、従来よりも高速 な計測も実現した¹²⁾。このマルチトーンバースト 波は離隔が大きくなると、一度に送波できる周波 数帯の数が増えるために計測高速化という面で威 力を発揮する。しかし、従来は10mを超えるよう な遠距離での探査はコンクリート供試体のみでし か実施しておらず,実際のコンクリート構造物で は試みたことが無かった。そこで、今回は本州四国 連絡高速道路株式会社の管理する因島大橋東高架 橋において、実際に 30m を超える遠距離計測実験 を行い,非接触音響探査法の遠距離計測に関する 適用性検討を行った。

2. 非接触音響探査法の概要

2.1 欠陥検出の基本原理

図-1 に示すようにコンクリート構造物の表面近 傍に空洞欠陥もしくは亀裂が表面に対して水平か つ平面的に存在していた場合,その欠陥上で板状 の構造が存在するとみなすことができる。ハンマ ーによる叩き点検を実施すると,縦振動とたわみ 振動の2種類の振動が発生することになる。

図-1 欠陥部の振動パターン (a)縦振動, (b)たわみ振動

コンクリート中の縦波音速を 3000~4000m/s, 欠 陥までの深さhを10~100mm程度とすると縦振動 の共振周波数は15~200kHzとなり、ほぼ非可聴域 である。一方でたわみ振動の場合は、コンクリート の材料定数(ヤング率、ポアソン比、密度)等に 依存するが、その共振周波数は縦振動よりも低く、 ほぼ可聴域の周波数となる。そのため、通常、ハ ンマーを用いた打音法では、このたわみ共振時の 発生音を聞いて欠陥の有無を判定していることに なる。本手法では音波照射加振によりこのたわみ 共振を発生させることにより欠陥を検出する。

2.2 非接触音響探査法の基本セットアップ

非接触音響探査法の基本セットアップ図を図-2 に示す。最初に音源から発した空中放射音波によ り対象壁面を励振する.次に励振時の壁面上の振動 をレーザドップラ振動計(LDV: Laser Doppler Vibrometer) もしくはスキャニング振動計 (SLDV: Scanning Laser Doppler Vibrometer) に より光学的に検出し、欠陥部と健全部の振動特性 の違いから欠陥を検出するという手法である。

 図-2 非接触音響探査法の基本セットアップ d₁:音源から測定対象面までの距離 d₂:測定対象面からLDVまでの距離 音源としては、指向性が鋭くかつ 5m 以上の遠距離 でも 100dB 以上の音圧を発生可能なものとして、 長距離音響発生装置(LRAD: Long Range Acoustic Device)もしくは強力超音波音源(UNAS: Ultrasonic Nonlinear Speaker)等を用いることができる。しか しながら、音波照射加振によりコンクリート表面 に加わる圧力は、測定表面での音圧が 100 dB とし ても、高々2 Pa 程度でしかない。これは直接ハン マーで叩く打音法に比べると百分の一程度の加振 力でしかないことを意味している。

2.3 音波送信方法

欠陥部のたわみ共振を利用すれば,音波照射の ような極めて弱い加振力でも振動を発生させるこ とが可能になる。このたわみ共振周波数で振動さ せるためには,その周波数を含んだ音波を送信す る必要があるが,単に広い周波数範囲を含むとい う理由でノイズ波やチャープ波といった波形を安 易に使用すると S/N 比の低い計測となってしまう ことになる。その主な理由は計測対象物からの反 射音波の影響により,計測用の高感度 LDV 自体が 振動してしまうためである。また、極めて弱い加 振力によりたわみ共振振動を発生増幅させるため にはその共振周波数による加振をある程度は持続 した方が効率的であることも理由の一つである。 (1)シングルトーンバースト波

そこで、著者らは図-3 に示すような中心周波数 の異なる短いバースト波を、逐次的に送信するト ーンバースト波を考案した⁸⁾。この波形は一回の 音波送出時に1つの周波数を使用することから、 シングルトーンバースト(STNB: Single tone burst)波と呼称することにする。この波形を用い れば欠陥探査に必要とされる広帯域の周波数成分 を得ることができる。同時に送信バースト波間の インターバルを十分長く取ることにより、測定対 象に音波が到達してから、計測対象面からの反射 音波がレーザヘッドに到達するまでの時間帯(計 測可能時間帯)に時間ゲートを適用して、目的信

(a)時間波形, (b)スペクトル

号を抽出することにより LDV の振動による影響 を軽減することが可能となる。さらに送信周波数 は逐次変化させているために,その周波数に合わ せた周波数ゲートも適用すれば,時間ゲートでは 除去できないトンネル内等における多重反射の影 響すらも低減可能となり,周囲の外乱ノイズに強 くかつ極めて高い S/N 比の計測が実現できること になる。

(2)マルチトーンバースト波¹²⁾

計測可能時間帯内であれば、1つの周波数だけで なく複数の中心周波数をもつ短いバースト波が順 次連続していても、計測は可能である。このよう な一回の音波送出時に複数の周波数を含んだ形式 の送信波を,マルチトーンバースト(MTNB: Multi tone burst)波と呼ぶことにする。この MTNB 波の模式図を図-4 に示す。

LDV と計測対象面間の距離が大きくなるほど、 計測対象面からの反射音波がレーザヘッドに到達 するまでの時間は長くなる。すなわち、距離が大 きくなるほど、1回の音波送出時に送出可能な周波 数帯の数も増えるために、このマルチトーンバー スト波を用いることによる計測高速化という面で 効果があることを意味している。

(3)計測時間の比較実験

コンクリート供試体(2×1.5×0.3m³)に埋設された 模擬空洞欠陥を用いて STNB 波と MTNB 波を用い た場合の計測時間の比較を行った。欠陥部には厚 さ 25mm, 直径 200 ϕ の発泡スチロールが深さ(か ぶり)80mm の位置に埋設されている(図-5 参照)。 実験セットアップは図-2 と同じで、d1 および d2 はそれぞれ約 5m および約 5.3m であった。音源と しては LRAD-300X(Lrad Corp.), SLDV としては PSV-400-H4(Polytec Corp.)を用いている。測定点 数は 35 点,使用した STNB 波のアベレージ回数 は 5 回で,音波の送信間隔は 50ms とした。また 比較のために使用した MTNB 波の送信間隔は 30ms のものを使用した。なお,STNB 波と同じ アベレージ回数をさらに短時間で実現するために,

(a)STNB, (b)MTNB $\times 5$

同じ MTNB 波を 5 回連続して送出した波形 (MTNB×5)を使用している(どちらもパルス長 3ms, 周波数範囲 1000-4800Hz, 周波数変調イン ターバル 200Hz とした)。なお、実験時のコンク リート表面近傍の音圧は約 100dB である。

振動速度(2867.2Hz)の分布図を図-6に示す。自 円は欠陥部の大きさと位置を、白線交点はスキャン位置を示している。図より,白円内に振動速度 が高い領域が集中していること、および最大値も 白円内に存在していることなどが共通しているこ とから,ほぼ同等の欠陥検出が出来ていることが わかる。計測時間は,STNB 波の場合が 210 秒、 MTNB 波の場合が 28 秒となり、従来の約 7.5 倍 の計測高速化が実現できることを確認できた。

2.4 欠陥検出アルゴリズム^{9,13)}

(1)振動エネルギー比

実際のコンクリート構造物の欠陥は複雑な形状 をしていることが多く,共振周波数のみを使用し た映像化では欠陥規模を明らかにできないことが 多い。しかしながら、ある周波数範囲での振動速 度のパワースペクトルの和が振動エネルギーに対 応する値であるとすると,欠陥部と健全部には明 確な差が生じていることが考えられる。そこで,振 動エネルギー比(VER: Vibration Energy Ratio)を(1) 式のように定義する。

$$[VER]_{dB} = 10\log_{10} \frac{\int_{f_1}^{f_2} (PSD_{defect}) df}{\int_{f_1}^{f_2} (PSD_{health}) df}$$
(1)

ここで、*PSD*_{defect}, *PSD*_{health}は欠陥部, 健全部のパワ ースペクトル密度, *f*₁および*f*₂は下限および上限周 波数である。実際のコンクリート構造物では健全 部でもばらつきがあることが考えられるが、ここ では計測された健全部で振動エネルギーが最も低 い値を健全部の基準として計算する。振動エネル ギー比は欠陥部, 計測不良点ともに高い値を示す。 (2)スペクトルエントロピー

計測対象であるコンクリート表面上の汚れや凹 凸等の影響でレーザ戻り光が減少すると、受光漏 れに起因する光学ノイズが生じる場合がある⁵⁾。 このような信号の周波数特性は白色雑音に近い特 性を示す。そこで、信号の白色性を表す特徴量であ るスペクトルエントロピーHを導入する。これは、 信号のスペクトルを確率分布と見なし、情報エン トロピーを計算したもので、(2)式で定義される。

$$H = -\sum_{f} p_{f} \log_{2} p_{f}, \qquad p_{f} = \frac{S_{f}}{\sum_{i} S_{f}}$$
(2)

ここで, *S*_fは測定点での振動速度のパワースペクト ルである。スペクトルエントロピー*H* はスペクト ルが均一な白色信号では高い値となる。受光漏れ による計測不良点は白色ノイズレベルが高く, 健 全部では信号レベルは低いが特徴的なピークを持 たないため,ともに高い値を示すことになる。 (3)音響特徴量を用いた欠陥検出アルゴリズム

前述の振動エネルギー比とスペクトルエントロ ピーといった 2 つの音響特徴量を組み合わせるこ とにより, 閾値を適切に選択することができれば, 表-1 に示すように欠陥部, 健全部および計測不良 点の識別が可能となる。

	振動エネルギー比	スヘ゜クトルエントロヒ゜ー	
健全部	低い	高い	
欠陥部	高い	低い	
計測不良点	高い	高い	

表-1 健全部・欠陥部・計測不良点の識別

3. 橋梁での遠距離計測実験¹³⁾

3.1 実験セットアップ

非接触音響探査法が遠距離でも実際に適用可能 であるかどうかを検討するために、広島県尾道市 にある因島大橋東高架橋にて探査実験を行った。 実験セットアップを図-7に示す。音源およびレー ザと計測対象面までの計測距離は約33.5mである。 音源としては LRAD-300X(LRAD Corp.), SLDV と しては PSV-500 Xtra (Polytec Corp.)を使用した。計 測箇所は事前の叩き点検で, 浮きがあると判定さ れた箇所である。図-8に計測範囲図を示す。図の 左側には目視できる細い亀裂が入っていることが わかる。図中の白線交点が SLDV による計測位置 を示している。測定点数は 77 点(7×11)で、計測領 域の大きさは約57×72 cm²であった。使用した音 波はパルス長 5ms, 300~4000 Hz の周波数範囲を 持つマルチトーンバースト波を用いた。波形全体 の長さは400msでアベレージ回数は3回としたた め、全体の計測時間は約224秒であった。

図-7 高架橋における実験セットアップ図

図-8 計測範囲 (57×72cm²)

3.2 実験結果

(1)振動速度スペクトル

時間&周波数ゲート処理後の振動速度スペクト ル例(欠陥部:黒線,健全部:灰線)を図-9に示す。 計測位置は図-8 中の白×部と白〇部であり,それ ぞれ欠陥部および健全部と思われる箇所に対応し ている。図より、630Hz および 1.5kHz に大きな振 動速度ピークが見られるが、これは反射音波に起 因するスキャニング振動計特有の XY2 軸のガルバ ノミラーによるヘッド共振であることが、事前の 確認実験で明らかになっている(無音時の計測で は発生しない)。したがって、実際の欠陥部の反応 は、灰線に対して黒線のみが飛びだしている 500Hz 前後の低い周波数帯域であることがわかる。

図-9 振動速度スペクトル(黒線:欠陥部、灰線:健全部)

(2)振動エネルギー比分布

振動エネルギー比(300-4000Hz)による映像結果 例を図-10に示す。ただし、SLDV(PSV-500Xtra) のヘッド共振(630 Hz, 1.5 kHz)を除くために 300-620 Hz, 640-1480 Hz および 1520-4000 Hz の積分値の合計を使用している。図より、目視で きる亀裂のやや右側に強い振動エネルギー比が存 在していることが確認できる。

(3)周波数帯域毎の振動エネルギー比分布

次に積分する周波数帯域を300Hzから700Hzまで100Hz毎に変化させた場合の振動エネルギー比分布の変化を図-11に示す。図より、300~400Hzといった低い周波数帯域では亀裂付近も振動エネルギー比が高いが、周波数帯域が高くなるにつれ

(b) 500-600Hz, (d) 600-620Hz+640Hz-700Hz

て亀裂の右側に振動エネルギー比の高い箇所が移 動していくことがわかる。これは、目視できる亀 裂とコンクリート内部に存在する亀裂がつながっ ていることを示唆しており、積分する周波数範囲 を変化させることで、内部亀裂のつながり具合を 推定できることを意味している。

(3)比較用の打音点検結果

振動エネルギー比による映像結果と比較するために,ハンマー加振時の振動速度分布を SLDV により計測した。加振位置は SLDV の計測用レーザ 光の近くとし,音圧を下げた LRAD の音をトリガ

用の信号音として利用して3回の加算平均を行った。ただし、高所におけるハンマー加振作業の困難性を考慮して、計測は横方向1ライン(17点)のみで行われた。計測位置およびその位置における振動エネルギー比を図-12に示す。なお、この実験の場合にはSLDVのヘッド共振の影響は無視できるために積分範囲は100-5000Hzとしている。図より、亀裂部のある計測点3から、計測点7にかけて振動エネルギー比が高く、亀裂部の右側に振動エネルギー比が高い箇所があることが確認できる。この結果は非接触音響探査法により得られた結果と同様な傾向を示していることがわかる。

4. まとめ

今回の実験結果より実際の橋梁において 30m を 超える離隔であっても、マルチトーンバースト波 を用いた高速非接触音響探査法により打音法とほ ぼ同等な欠陥検出が可能であることが確認された。 また、特に 30m が限界であるというわけでもなく、 さらに遠距離での計測も可能であると思われる。 以下に、現在までに判明している本手法の特徴を 列挙する。

- (1) コンクリート点検時に一般的に用いられている打音法と同じたわみ共振を利用した非破壊検査法であるため、本質的に打音法の代替手法となりうる手法であると同時にエネルギー効率が高い手法であること(小型発電機1台で1日中計測可能)
- (2) 模擬空洞欠陥を埋設したコンクリート供試体 を用いた実験結果より、打音法とほぼ同程度の 深さと大きさの欠陥を検出できること⁷⁻⁸⁾。
- (3) 模擬亀裂欠陥を埋設したコンクリート供試体 を用いた実験結果より、亀裂幅 0mm の欠陥で あっても検出可能であること^{6.8)}。
- (4) トーンバースト波と時間周波数ゲートを用いることで高い S/N 比を実現し、交通振動やトンネル内残響の影響もほとんど受けないこと。
- (5) 振動エネルギー比とスペクトルエントロピー という 2 つの音響特徴量を用いた欠陥検出ア ルゴリズムにより、実コンクリート構造物にお ける欠陥検出にも適用可能であること^{9,13)}。
- (6) 面的加振を用いているために凹凸のある面で も計測可能であること。吹付けコンクリート面 においても打音法と同じ欠陥検出精度を実現。
- (7) 音波照射加振を用いているために基本的に安全な手法であること。

本手法には周囲環境騒音や角度依存性といった固 有の問題は存在するものの、実はこれらは音源自 体に起因する問題であるため、強力超音波音源等 を用いれば解消することが既に明らかになってい る¹⁰⁻¹¹。このような遠距離から非接触的に打音法 とほぼ同等な検査結果を得ることが可能な高速非 接触音響探査法が実現したことにより、今後、世 界中の打音点検に変革が起きることが予想される。

参考文献

- Y.Shimada, O.Kotyaev : Development of Laser Based Remote Sensing System for Inner-Concrete Defects, *IEEJ Trans. Electr. , Info. & Systems ,* 129[7] , pp.1192-1197, 2009.
- 島田義則, コチャエフ オレグ, 篠田昌弘, 御崎哲一, 高橋康将, 瀧浪秀元:レーザを用いたコンクリート欠 陥検出の進展, 非破壊検査 61(10), pp.519-524, 2012.
- 森和也, Andrea Spagnoli,村上敬宣,鳥越一平:コン クリート構造物の圧力波を用いた新しい非接触非破 壊検査法,コンクリート工学年次論文集 Vol.24, No.1, pp.1473-1478, 2002.
- 4) 森和也, Andrea Spagnoli, 近藤悟朗,村上敬宣,鳥越 一平:衝撃波を用いたコンクリート構造物の非接触非 破壊検査法の開発とその自動化に関する研究,日本機 械学会論文集 A 編 70 巻 695 号 pp. 986-994, 2004.
- 5) 貝戸清之,阿部雅人,藤野陽三,熊坂和弘:局所的な 振動特性に着目したコンクリート構造物の空隙検出, 土木学会論文集 No.690/V-53, pp.121-132, 2001.
- R.Akamatsu, T.Sugimoto, N.Utagawa and K.Katakura : Proposal of Non-Contact Inspection Method for Concrete Structures, Using High-Power Directional Sound Source and Scanning Laser Doppler Vibrometer, *Jpn. J. Appl. Phys.*, Vol.52, 07HC12, 2013.
- K.Katakura, R.Akamatsu, T.Sugimoto and N.Utagawa : Study on detectable size and depth of defects in noncontact acoustic inspection method, *Jpn. J. Appl. Phys.*, Vol.53, 07KC15, 2014.
- 8) 杉本恒美, 歌川紀之, 片倉景義: コンクリート構造物 非破壊検査のための遠距離非接触音響探査法, 建設 施工と建設機械シンポジウム論文集, pp.137-142, 2014.
- K.Sugimoto, R.Akamatsu, T.Sugimoto, N.Utagawa, C.Kuroda, K.Katakura : Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy, *Jpn. J. Appl. Phys.*, Vol.54, 07HC15, 2015.
- 10) 杉本恒美,杉本和子,歌川紀之,片倉景義:強力超音波音 源を用いたコンクリート非破壊検査のための非接触 音響探査法の検討,コンクリート工学年次論文集 pp.1753-1758, 2015.
- T.Sugimoto, I.Uechi, K.Sugimoto, N.Utagawa, K.Katakura : Study on the Non-contact Acoustic Inspection Method for Concrete Structures by using Strong Ultrasonic Sound source, *Physics Procedia*, Vol.70, pp.398-401, 2015.
- 12) T.Sugimoto, K.Sugimoto, N.Kosuge, N.Utagawa, K.Katakura : High-speed noncontact acoustic inspection method for civil engineering structure using multitone burst wav, Jpn. J. Appl. Phys., Vol.56, 07JC10, 2017.
- 杉本恒美,杉本和子,川上明彦,歌川紀之:遠距離音 波照射加振を用いた非接触探査法の欠陥検出アルゴ リズム,コンクリート工学年次論文集、Vol.39, pp.1849-1854, 2017.