- 「建設施工研修会」(映画会)開催のご案内 ◎ 場 所:建設クリエイトビル 5階 会議室 高松市福岡町3丁目11番22号 TEL: 087-821-8074
- ◎ 日 時:令和7年11月25日(火)13:30~16:00

NO.	タイトル	製作年	上映時間	提供者
1	K-DIVE® ~次の遠隔現場は「林業」~	2025年	5.00	コベルコ建機(株)
2	水素燃料電池ショベル 試作機を開発	2024年	2.00	コベルコ建機(株)
3	SK160BR-7 Blade Runner[商品紹介]	2024年	2.00	コベルコ建機㈱
4	VisionLink® Productivity を使った Cat® グレード3D 機能のご紹介	2024年	2.00	キャタピラージャパン(合)
5	BIM/CIM活用:軽量盛土工法でやってみた!	2025年	12.00	福井コンピューター
6	小規模工事におけるICT活用~小型ICTバックホウによる作業土工~	2024年	20.00	サイテックジャパン(株)
7	TLS Kinematic App 〜地上型レーザーの新たな運用手法〜	2025年	3.00	リーグルジャパン(株)
8	圧入の自動化・遠隔化の取り組み	2025年	3.00	技研製作所
9	圧入工法の現在	2025年	6.00	技研製作所
10	RED HILL 1967	2024年	3.00	技研製作所
11	機械式駐輪場「エコサイクル™」〜地上に文化を、地下に機能を〜	2025年	5.00	技研製作所
12	災害対策工法「圧入」~能登半島地震復旧工事~	2025年	5.00	技研製作所
	休憩			
13	地盤改良機遠隔施工技術(仮)	2025年	3.00	㈱不動テトラ
14	重機レーザー計測システムと共有データ環境R-CDEの連携	2025年	4.00	(株)フジタ
15	全自動現場巡視ドローンと現場点検アプリの連携	2025年	2.00	(株)フジタ
16	鉄道高架橋のプレキャスト化への取り組み	2025年	6.00	鉄建建設(株)
17	シーコーム工法(SeaComb Method) ~!形鋼材を用いた複合構造橋脚~	2024年	7.00	五洋建設㈱
18	『A4CSEL in NARUSE 自動化施工システムによる「現場の工場化」』	2023年	3.49	鹿島建設㈱
19	『A4CSEL 造成工事への本格適用を開始』	2024年	3.43	鹿島建設㈱
20	『山岳トンネルの自動化施工システム「A4CSEL for Tunnel」が完成!』	2024年	5.54	鹿島建設㈱
21	『一車線規制で床版取替が可能な「スマート床版更新(SDR)システム」を開発』	2022年	4.20	鹿島建設㈱
22	建築スマート生産現場紹介	2023年	6.06	鹿島建設㈱
23	新型マニピュレータ溶接ロボッット	2024年	2.57	鹿島建設㈱
24	スカイランナーApollo スカイテーブルDiana	2024年	6.22	レンタルのニッケン(株)
25	柵とバリケード	2024年	6.08	レンタルのニッケン(株)

※当日、若干の変更が生じる場合がございますこと、ご了承願います

一般社団法人 日本建設機械施工機械協会 四国支部

「建設施工研修会」 記録映像の概要 遠隔操作により、本質的な安全や効率化をもたらすK-DIVE®、次のターゲット市場は林業。 カーボンニュートラルに向けた取り組みとして、2023年に、水素燃料電池ショベルの試作機を完成 大容量チルトアングルドーザを搭載した16トンクラス後方超小旋回ショベル。本機種は、ショベルでの掘削作業に加え、整地や盛土、切土など、ブルドーザーに近い用途でも使用 できます。欧州・米州・豪州エリアで好評の「ED160BR」をベースに開発しました。 キャタビラーのCat® グレード3Dは、これまで可能だった排土板(ブレード)の制御に加え、ステアアシスト機能により走行操舵の操作も自動で行えるようになりました。また、 VisionLink® Productivityのサービスを使うことで、最新の3D設計図面データを現場から離れたところからも機械にアップロードすることができ、施工効率を大幅に向上できます。 4 軽量盛土の工事をBIM/CIMを活用し効率化を行った 作る事かり眼どなって。 元々軽量盛まされた場所の上に、さらに軽量盛土を重ねる工事で、現地の側溝の上にかなり高い足場を組む必要があったため、TerraceARで足場を現地投影し、まずはその検証 に活用することで、業務の効率化につながった。 小型ICTバックホウを活用した床掘作業の効率化として、簡易的な3次元設計データ作成方法、ICTバックホウ施工、出来形確認などを紹介する。 6 3次元計測において、すでに普及しているTLS(地上型3Dレーザースキャナー)ですが、最新のTLSでは移動体(キネマティック)計測としても運用することが可能です。 現場の規模/目的に応じて、TLS1台でこれまでよりも更に効率的に3次元計測をおこなうことができるハイエンドTLSをご紹介いたします。 遠隔地からの自動運転による圧入施工を叶えるDX 技術「iNAVILINK®(アイナビリンク)」(自動運転)、「G-Lab Vision(ジーラボ・ビジョン)」(遠隔支援)の現場実証を、高知県の宇 は簡単によったが自動性制による正く地上を行えるDAながでいていません。 体急港海岸等までて実施しました。 建設業界で深刻化している、労働力人口の減少などの社会課題に画期的なソリューションを提供する本技術。今後さらに現場のフィードバックを集めて完成度を高め、早期の製品 化を目指してまいります。 圧入工法の最新技術、適用について、一挙に紹介。 「百聞は一見に如かず」をコンセプトに、圧入技術の粋を集めたGIKENの機械や工法、構造物の実物を展示しています。「圧入」とはどのような技術なのか、言語や文化の壁を超え て心から納得、理解していただける施設です。 RED HILL 1967での体験が、世界中から訪れた方々にとって、建設のあるべき姿、建設の未来について考えるきっかけとなり、「工法革命」がグローバルに推進されることを期待し 10 ています。 「地上に文化を、地下に機能を」というコンセプトのもと開発された機械式駐輪場「エコサイクル[™]」。地上にはコンパクトな入出庫プースのみを設置し、地下空間に1基あたり200台以上の自転車を収容します。 圧入により構成された連続壁が、そのまま駐輪場の耐震構造壁となる合理的な仮設レス工法に加え、機械装置をプレハブ化することで現場作業を大幅に削減し、省スペース・短工期施工を実現します。 11 駐輪場問題の解決策としてだけでなく、安心・安全で快適なまちづくりに寄与する最先端の駐輪システムです。 令和6年能登半島地震および奥能登豪雨で被災されました皆様に衷心よりお見舞い申し上げます。 油圧式杭圧入引抜機「サイレントパイラー®」が、今和6年能登半島地震により崩落した、「のと里山海道」の道路啓開における車線拡幅工事に採用されました。 下り線のみ通行可能だった道路の上り線開通に向けた車線拡幅工事にあたり、非常に狭隘な施工スペースの中、機械装置を既設杭上で稼働させ省スペースで施工できる「GRBシ ステム®」を投入。作業場として他工法では必要となる仮設桟橋を不要とし、施工中も緊急車両等の交通を妨けることなく、早期完工を実現しました。 12 13 地盤改良機の遠隔施工のPRビデオ 本システムは、ICT 土工向けに開発した重機搭載レーザー計測システムと、「i-Construction システム学寄付講座」協調領域検討会の施工ワーキンググループが開発した共通 データ環境「R-CDE」を API 連携で統合したものです。この結果、ICT 土工の出来形の段階確認を従来の実地・書面による確認から、R-CDE 上で実施できることを確認し、その有効性について紹介します。 全自動現場巡視ドローンは、自動離発着、自動充電、撮影データの自動転送機能を備えた完全自動運用型ドローンシステムです。事前に設定したルートに沿って自動で飛行し、効率的かつ安全に現場の巡視や点検を行うことができます。道路工事現場において本システムを用いた目視外飛行(レベル3)による巡視と、現場で発生した不具合や是正指示の情報を一元管理できる現場点検アプリ「ゲンコネ」との連携を通じて、施工管理の効率化と高度化の実証について紹介します。 15 16 開発した鋼管拘束型鉄筋継手と閉合鉄筋継手を初めて実施工に採用した シーコーム工法は複合構造を用いた臨港道路橋脚の構築工法です。ウェブにスタッドを溶接したI形鋼材を芯材とし、橋脚部では主鉄筋の代替材料,頂版部ではI形鋼材をユニット化して構築します。I形鋼材の使用による主鋼材の本数削減と鋼材のユニット化により,工期短縮および省力化を図ることが可能です。 本動画では、開発の背景から工法概要,そして従来のRC構造と比較した効果についてまとめております。 17 国土交通省発注の成瀬ダム堤体打設丁事(秋田県東成瀬村)において、2020年度から適用している自動化施丁システム「A4CSEL®1(クワッドアクセル)の機能・性能の向上、適用 国工文庫官単元はの水線となる作引成工事(参加系来水線行)において、2020年度がも適用している自動に応上すが、A. A. C. School (フラデノンドル)の機能・圧能が向工、適用 範囲の拡大を推進しています。 今般、同ダム工事において、CSG※2の自動搬送と自動ダンプトラックでの運搬・荷下ろし作業を実現したことで、既に適用している自動ブルドーザによるまき出し、自動振動ロー ラによる締固め作業と合わせて、CSGの製造から打設に至る全ての作業を完全自動化することに成功しました。これにより、鹿島が成瀬ダムにおいて目指してきた「現場の工場化」 の一つの形が実現しました。 建設業界の課題である「人手不足・熟練技能者不足への対応」、「生産性向上」、「労働災害擽減」を目的に、自動化施工システム「A4CSEL®」(クワッドアクセル)の開発を進め、主 にダム工事に導入してきました。2020年度から適用した成瀬ダム堤体打設工事(秋田県東成瀬村)では最大で3機種14台の自動化建設機械を3~4名のITパイロット(管制員)で稼 働させ、2022年10月には月間打設量の日本記録を62年ぶりに更新しました。 19 2017年から開発を進めてきた、次世代の山岳トンネル自動化施工システム「A4CSEL for Tunnel」(クワッドアクセル・フォー・トンネル)が完成しました。2018年からは模擬トンネル(静岡県富士市)、2021年からは実坑道である神岡試験坑道(岐阜県飛騨市)にて、山岳トンネルの掘削作業6ステップの自動化に向けた開発を進め、このたび、神岡試験坑道において6ステップすべての自動化・遠隔化をご紹介 道路橋床版更新工事に伴う交通規制等によるソーシャルロスの大幅な低減を可能にする「スマート床版更新(SDR※)システム®」の開発を進めています。2019年には『全断面(2車線道路の場合2車線規制)取替退を対象とした「全断面SDRシステム」を開発し、このたび、ソーシャルロスのさらなる低減を可能にする『幅員方向分割(2車線道路の場合1車線規制)取替退を対象とした「幅員方向分割SDRシステム」を開発しました。 21 「(仮称)大宮桜木町1丁目計画(OS1)」での施工管理のデジタル化や施工ロボットの紹介。 タワークレーン遠隔操作ンステム「タワリモ」、耐火被覆吹付ロボット、現場を巡視する4足歩行ロボット「Spot」、自動搬送システム、追従搬送ロボット、墨出しロボット、天井施工ロボット。(天井施工はロボットが、吊りボルト、下バー、天井ボードの運搬・取り付けを担い、仮設のエレベーター輸送量や、高所作業を減らす。自動搬送は、多くの時間を費やす資材運搬をアプリ、エレベーター自動運転、搬送ロボットで連携して、夜間なども利用して生産性を向上させる。) 「働き方改革」の点から、ペーパーレス図面チェック、資機材や人の位置を表示する「3D KーField」を導入。作業員専用スマートフォン「KーMobile」には、作業時連絡、分散型朝礼、資料閲覧、危険検知のほか、施工、資機材、出来高の管理などのアプリをインストール使用。このほか、配筋結束、鉄骨溶接、床コンクリート仕上げ、外装取り付けなどのロボットの使用も紹介。 22 溶接量が多い大型鉄骨柱を主な対象として、柱の全周溶接に伴う一連の繰り返し作業を全自動化する新型の「マニピュレータ(多関節型アーム)型現場溶接ロボット」(以下、本ロボット)を開発し、工事に実導入しました。本ロボットは、今回新たに開発した「開先かいさきセンシング機能」と「スラグ除去機能」を、2020年に開発した溶接ロボット(以下、従来型ロボット)に実装したものです。 23

次世代資材連搬・楊重機 スカイテーブル「Diana (ディアナ)」 電動走行作業台スカイランナー「Apollo(アポロ)」を開発 〜資材運搬・楊重・取り付けを1人で実施、作業効率が大幅に向上〜

資材の運搬・揚重・取り付け作業を一人で完了する事が出来るため、作業時間の大幅な短縮が可能です。天台の利用台数が削減されることで、天井取付工事における総合的な業務改善が見込めます。

新商品!現場の問題をさくっと解決「柵っとバリケード」を開発 〜クレーン車での作業時安全対策が簡単に実現〜 【商品概要】 1) マグネット固定式・アルミ伸縮ボールで短時間に楽々設置 2) 上記アルミ伸縮ボールにロープ等を渡して周りを囲えば設置完了 3) 設置後はそのまま移動・旋回可能 4) 現場状況に合わせ、使用本数の調整可能 5) 作業量の軽減及び作業効率の大幅向上