JCMAS

Lubricating grease for construction machinery

JCMAS P 040: 2004

Published 2004-05-20 English translation issued in June 2012

Japan Construction Machinery and Construction Association

Forward

This Japan Construction Machinery and Construction Association Standard (hereafter "JCMAS") was prepared by Domestic Standardization Committee of Japan Construction Machinery and Construction Association (hereafter "JCMA") and has been published by Chairman of JCMA

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. JCMA Chairman and/or Domestic Standardization Committee shall not be held responsible for identifying any or all such patent rights.

- The draft of this JCMAS was approved on 2004-01-29 at JCMA Domestic Standardization Committee

- Invitation for submission of comments on the draft JCMAS according to WTO/TBT agreement "Code of good practice" was made from 2004-0.3-15 to 2004-05-15.

- Then this JCMAS was published on 2004-05-20.

- English translation was prepared then it was published in June 2012.

NOTE "Explanatory Note" following the main text describes the purpose, the development history, the rationale (major discussions, etc.) and the lilsts of drafting committee members of this standard.

- Postal address for opinions and/or questions of this JCMAS: Standard Division, Japan Construction Machinery and Construction Association, 8-Gou, 5-Ban, 3-Chome, Shibakouen, Minato-ku, Tokyo, 105-0011, Japan

Japan Construction Machinery and Construction Association Standard JCMAS P 040:2004

Lubricating grease for construction machinery

1 Scope

This standard specifies general lubricating grease for construction machinery (hereinafter referred to as GK for abbreviation) and biodegradable grease for construction machinery (hereinafter referred to as GKB for abbreviation).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

JIS K 2220:2003 Lubricating grease

JIS K 2251 Crude petroleum and petroleum products - Sampling

JIS K 2283 Crude petroleum and petroleum products-Determination of kinematic viscosity and calculation of viscosity index from kinematic viscosity

JIS K 6251 Rubber, vulcanized or thermoplastics-Determination of tensile stress-strain properties

JIS K 6253 Rubber. vulcanized or thermoplastic-Determination of hardeness

JIS K 6258 Rubber, vulcanized or thermoplastic-Determination of the effect of liquids

ISO 2137 *Petroleum products and lubricants -- Determination of cone penetration of lubricating greases and petrolatum*¹⁾

ISO 2176 *Petroleum products-Lubricating grease-Determination of dropping point*¹⁾

- **ISO 6743-9** Lubricants, industrial oils and related products (class L) -- Classification -- Part 9: Family X (Greases)¹⁾
- **ISO 11009** *Petroleum products and lubricants -- Determination of water washout characteristics of lubricating greases*¹⁾
- **ISO 13226** Rubber -- Standard reference elastomers (SREs) for characterizing the effect of liquids on vulcanized rubbers
- ASTM D 2266 Standard Test Method for Wear Preventive Characteristics of Lubricating Grease (Four-Ball Method)

3 Class

Classes of lubricating grease for contruction machinery are as indicated in **Table 1**. Based on **JIS K 2220**:2003, Clause 3, q), Table 1 worked penetration number, general lubricating grease for construction machinery (GK) is classified into No. 1 and No. 2 and biodegradable grease (GKB) is classified into No. 2.

ASTM D 2596 Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Grease (Four-Ball Method)

¹⁾ Cited as information

Class		Range of operating	Suitability for use conditions		
I.I	Consistency	temperature	Contact with	Bio-	Application example
Use	Grade	°C	water	degradability	
General grease	No. 1	-20~+130	Suited	No	Construction modeling
(GK)	No. 2	-20~+130	Suited	No	Construction machinery
D' 1 111					Construction machinery to be
Biodegradable	No. 2	-20~+130	Suited	Yes	used at the site requirng
grease (GKB)					environmental protection

 Table 1
 Classification of Lubricating grease for construction machinery

4 Quality and performance

4.1 General lubricating grease for construction machinery (GK)

General lubricating grease for construction machinery (GK) shall comply with the criteria as specified in **Table 2** when tested in accordance with the testing methods as specified in **Clause 5**.

In addition, hazardous substance(s) that may cause harmful effect(s) on environment shall not be used in manufacturing processes.

Table 2	General lubricating grease	for construction machinery	(GK)	performance criteria
	00		· · · ·	1

Perf	ormance criteria		
Item	Test method	Cone pen	etration No.
	(subclause no.)	No. 1	No. 2
Range of operating temperature (°C)		-20~+130	-20~+130
Thickener type		Report ¹⁾	Report ¹⁾
Worked penetration	5.3	310~340	265~295
Unworked penetration	5.3	Report ¹⁾	Report ¹⁾
Apparent viscosity (-10° C, shear rate: $10S^{-1}$) (Pa * s)	5.3	250 or less	500 or less
Base oil kinema tic viscosity $(40^{\circ}C) (mm^2/s)$	5.4	Report ¹⁾	Report ¹⁾
Heat resistance			
Dropping point (°C)	5.3	170 or more	170 or more
Oil separation (100°C, 24h) (mass %)	5.3	10 or less	5 or less
Eevaporation loss (99°C, 22h) (mass %)	5.3	2.0 or less	2.0 or less
Rust prevention			
Humidity cabinet test (14 days)	5.3	Class A	Class A
Copper corrosion (100°C, 24h)	5.3	Have no color chang copp	ge in green or black on er plate
Extreme-pressure/ anti-wear properties	·		2
Four-ball load bearing characteristics (weld load) (N)	5.5	1961 or more	1961 or more
Four-ball wear resistance (wear diameter) (mm)	5.6	0.7 or less	0.7 or less
Mechanical stability			
Worked stability	5.3	400 or less	375 or less
Water washour characteristics			
Loss in mass (%) by water washout (38°C, 1h)	5.3	10 or less	10 or less
Oxidation stability			•
Oxidation stability (90°C,100h) (KPa)	5.3	80 or less	80 or less

	Peri	formance criteria			
	Item		Cone penetration No.		
		(subclause no.)	No. 1	No. 2	
Seal immesion test (1	100°C, 72h)				
NBR	Hardness change	5.7	-30 or more	-30 or more	
	Tensile strength change (%)	5.7	-70 or more	-70 or more	
	Elongation change (%)	5.7	-80 or more	-80 or more	
	Volume change (%)	5.7	0~40	0~40	
AU (urethane)	Hardness change	5.7	-5~+5	-5~+5	
	Tensile strength change (%)	5.7	-70 or more	-70 or more	
	Elongation change (%)	5.7	-60 or more	-60 or more	
	Volume change (%)	5.7	-5~+15	-5~+15	
NOTE 1	Apply durometer type A for measu	ring hardness change in	the seal immersion tes	st	
NOTE 2	Apply low nitride rubber material	(SRE-NBR/L) defined i	n ISO 13226 as "NBF	R" for the seal immersion	
test.					
NOTE 3	The characteristics of the "AU" m	aterial to be used in the	seal immersion test sh	all be in accordance with	
Table 3.					
Table footnote ¹⁾	Report the test results.				

Table 2 General lubricating grease for construction machinery (GK) performance criteria (Continued)

 Table 3
 Seal material characteristics

Criteria		Unit	AU
	Hardness	Durometer A	88~98
	Tensile strength	MPa	29.4 or more
	Elongation	%	300 or more

4.2 Biodegradable grease for construction machinery (GKB)

Biodegradable grease for construction machinery (GKB) is composed of base oil having biodegradability and additives which give no adverse effect on environment. It shall comply with the criteria as specified in Table 2 when tested in accordance with the testing methods as specified in **Clause 5**.

Table 4 Biodegradable grease for construction machinery (GKB) performance crite	eria
---	------

Performance criteria		
Item	Test	Cone penetration No.
	method	No. 2
Range of operating temperature (°C)		-20~+130
Thickener type		Report ¹⁾
Worked penetration	5.3	265~295
Unworked penetration	5.3	Report ¹⁾
Apparent viscosity (-10°C, shear rate: 10S ⁻¹) (Pa's)	5.3	500 or less
Base oil kinematic viscosity $(40^{\circ}C) \text{ (mm}^2/\text{s})$	5.4	Report ¹⁾

	Pe	erformance o	riteria
	Item		Cone penetration No.
			No. 2
Heat resistance			
Dropping point (°C))	5.3	170 or more
Oil separation (100°	C, 24h) (mass %)	5.3	5 or less
Evaporation loss (99	9°C, 22h) (mass %)	5.3	2.0 or less
Rust resistance			
Humidity cabinet tes	st (14 days)	5.3	Class A
Copper corrosion (1	00°C, 24h)	5.3	Have no color change in green or black on copper plate
Performance criter	ia	•	
Extreme-pressure/	anti-wear properties		
Four-ball load bearing	ng characteristics (weld load) (N)	5.5	981 or more
Four-ball wear resist	tance (wear diameter) (mm)	5.6	0.7 or less
Mechanical stabilit	У		
Worked stability		5.3	375 or less
Water washout cha	racteristics		
Loss in mass (%) by	water washout (38°C, 1h)	5.3	10 or less
Oxidation stability			
Oxidation stability (99°C, 100h) (kPa)	5.3	80 or less
Seal immersion test	t (100°C, 72h)	•	
NBR	Hardness change	5.7	Report ¹⁾
(nitride rubber)	Tensile strength change (%)	5.7	Report ¹⁾
	Elongation change (%)	5.7	Report ¹⁾
	Volume change (%)	5.7	Report ¹⁾
AU (urethane)	Hardness change	5.7	Report ¹⁾
	Tensile strength change (%)	5.7	Report ¹⁾
	Elongation change (%)	5.7	Report ¹⁾
	Volume change (%)	5.7	Report ¹⁾
Standards for envi	ironment		
Biodegradability (28 days)		5.8	Standards in section 5.8 are to be met.
Fish acute toxicity 96h LC ₅₀ value		5.8	Standards in section 5.8 are to be met.
NOTE 1	Apply durometer type A for measuring hardness change in the seal immersion test.		
NOTE 2	Apply low nitride rubber material (SRE-NBR/L) defined in ISO 13226 as "NBR" for seal imm		BR/L) defined in ISO 13226 as "NBR" for seal immersion
test.			
NOTE 3	Characteristics of the "AU" material to be used in the seal immersion test shall be in accordance w		used in the seal immersion test shall be in accordance with
Table 3			
Table footnote	¹⁾ Report the test results.		

Table 4 Biodegradable grease for construction machinery (GKB) performance criteria (Continued)

5 Tests methods

5.1 Material sampling method

Material sampling methods shall be in accordance with JIS K 2251.

5.2 Tests apparatus in general

Tests apparatus shall be, in general, in accordance with JIS K 2220.

5.3 Basical grease tests

Basical grease tests shall be in accordance with JIS K 2220.

5.4 Base oil kinematic viscosity test

Base oil kinematic viscosity tests shall be in accordance with that specified in JIS K 2283.

5.5 Four ball extreme-pressure test

Four ball exreme-pressure test shall be in accordance with ASTM D 2596.

5.6 Four ball wear resistance test

Four ball wear resistance test shall be in accordance with ASTM D 2266.

5.7 Seal immersion test

Seal immersion tests shall be in accordance with the dip test methods for vulcanianized rubber as specified in **JIS K 6258**. Then, for evaluation purpose, tensile test methods for vulcanized rubber as specified in **JIS K 6251** and hardness test methods for vulcanized rubber and thermoplastic rubber as specified in **JIS K 6253** are to be applied.

5.8 Environmental criteria

Environmental criteria shall be in accordance with Japan Environmental Association Eco Mark Product Category No.110 "Biodegradable Lubricating Oil Version2.4", subclause 4.1.

Explanatory note

Introduction

This Annex explains the main texts and specified/described as well as referenced matters and also those relating to the aforementioned. Accordingly, this annex does not comprise any provision of this standard.

1 Purpose of this standard

There are two methods to classify a grease: one is the method to classify it by its components (base oil, thickener, additives), and another is the method to classify by application as in **JIS K 2220**. And also, in **JIS K 2220**:2003 version, grease classification by ISO was added to **Annex 1** (**Normative**). So far, however, each construction machinery manufacturer has recommended its own branded product or those available from the market based on their application. Against this, construction machinery users have needed common grease to satisfy performance requriements by various construction machinery manufacturers under the market trend where they have been using plural number of construction machines, diversified models and designs, and with the development of rental or leasing systems. Taking into account such background, this standard is established to standardize grease for use with construction machinery.

Actual grease performance currently used for construction machinery is employed as the basis of this standard.

This standard for general lubricating grease for construction machinery (GK) gives provisions of lubrication performance and quality of grease for use with hydraulic excavators, bulldozers, wheel loaders and the like that need periodical lubrication service. In addition, this standard provides grease specifications to satisfy construction machinery users in terms of cost, lubrication intervals, availability, handling characteristics, etc., and specifies two classes - cone penetration grades of No. 1 and 2.

The other standard for biodegradable grease for construction machinery (GKB) sets forth specifications of biodegradable grease intended for use with construction machinery, and with a single cone penetration grade of No 2 considering the market circumstances. As to standardizing biodegradability, various standards including ISO, Blue Angel and VAMIL were investigated but in the end it has been decided to specify the minimum requirements in accordance with Japan Environmental Association Eco Mark Product Category No.110 "Biodegradable Lubricating Oil Version2.4", subclause 4.1.

Biodegradable grease can minimize environmental burden by gradual degradation by microorganism in environment even in case of grease spillage and spread through construction machinery operation.

2 History of establishment of the Standard

The draft of this standard was prepared by the Equipment Engineering Committee, Fuels & Lubricants Subcommittee of Japan Construction Machinery Association (JCMA), then reviewed and approved by the Domestic Standard Subcommittee and subsequently established as a JCMAS, after posting for comments for a period of 60 days in accordance with WTO Agreement on Technical Barriers to Trade (TBT) "Code of good practice (CGP)".

3 Major discussions

3.1 Range of operating temperature

JIS K 2220 specifies grease operating temperature range between - 10° C (for low side) and + 100° C (for high side). Usually, guaranteed temperature range for construction machinery by the manufacturer is –from 20°C up to + 40°C, but while taking high temperature during the machine manufacturing process at the painting line and high temperature around the machine engine, modification of operating temperature range up to + 130° C was proposed. Through certain discussions, eventually, operating temperature range was decided to be from - 20° C and up to 130° C. Also it was decided not to specify but to report the thickener type.

3.2 Oil separation

As the oil separation information may be included as one of purchasing conditions at the construction site of major general contractors, this test has been included. Discussions were made around the testing temperature and duration. While this standard specifies grease operating temperature range as $+ 130^{\circ}$ C for high side on the other side there exists no testing method provisions at $+ 130^{\circ}$ C and it will cause confusion for the user of this standard. While the current JIS gives provisions for the test temperature of $+ 100^{\circ}$ C for 24 hours, the testing at $+ 130^{\circ}$ C for 30 hours is not a general practice and is considered rather too severe for lithium-type grease, testing conditions as that in the current JIS are applied.

3.3 Lubricating performance

Lubricating performance test is a test to check grease bearing life and was strongly requested by construction machinery manufacturers. However, testing method **ASTM D 1741** has been withdrawan 10 years ago, and **ASTM D 3336**: 1997 "Standard test method for life of lubricating grease in ball bearing at elevated temperature" is considered to be the most popular method instead. Therefore, it was once planned to specify the requirements at the highest grease operating temperature of 120°C (based on **ISO 6743-9**: 2003) with the bearing life of minimum $L_{50} = 500$ h or the results of first 3 tests are 350 h or more . Subsequently, discussions on this consideration were made with the experts from Japan Grease Association. As the result of discussions, it became apprent that characteristics of testing equipment specified in **ASTM D 3336** differ each other and correlation between test results using different test aparatus is not good enough and therefore unreliable. Accordingly, this test item was withdrawn from this standard leaving the responsibility for this test and results is left for machine manufactureres.

3.4 Seal immersion test

As to seal material rubber or resin resistance against grease, imersion test method was investigated. At the early stage of developing this standard, test conditions of 70°C with duration of 72h was proposed. However based on current conditions of greased parts of state-of-art construction machinery, test temperature of 100°C with duration of 72 h was specified. Construction machinery manufactureres have evaluated market-proven grease under the above condition and standard values are then decided accordingly. As to biodegradable grease, there is a report that nitrile content has significant impact on hardness and volume shift through the test. However, as construction machinery manufacturers have not enough experiences on this item, specific requirements are not decided for biodegradable grease and it is decided to requre report of the results.

4 Scope

This standard is applicable to general grease and biodegradable grease for construction machinery.

JCMAS H 020 : 2007

8

5 Provisions

Nothing to state in particular..

6 Possible concerns

Nothing to state in particular..

7 Normative references

Nothing to state in particular..

8 Patent rights and so on

Nothing to state in particular..

9 Others

Nothing to state in particular..

10 Composition of the Drafting Committees

Listed below are members who compose the Drafting Committee and the Reviewing Committee related to this Standard.

Responsibility	Name	Organization (At fiscal 2003 year end)
Chairman	OHHASHI, Hideo, Mr	Academic expert
Observers	FUJIWARA, Tatsuya, Mr	Ministry of Economy, Trade & Industry
(Official	INAGAKI, Takashi, Mr	Ministry of Land, Infrastructure & Transport
Governmental)	YOSHIDA, Tadashi, Mr	Public Works Research Institute
Members	TAKAHASHI, Shoichi, Mr	Ministry of Health, Labor & Welfare
	KOGA, Hidekazu, Mr	Ministry of Economy, Trade & Industry
	WATANABE, Ken-ichi, Mr	Japanese Standards Association
	HIGASHI, Hidehiko , Mr	Academic expert
	SUGIYAMA, Yasuo, Mr	Academic expert
	NISHIGAYA, Tadaaki, Mr	Construction Method & Machinery Research Institute
	TONOMURA, Yoshihiro, Mr	Nishio Rent All Co., Ltd.
	KUWABARA, Yoshitaka, Mr	Nishimatsu Construction Co., Ltd.
	AOYAMA, Toshiyuki, Mr	NIPPO Corporation
	IWAMOTO, Yujirou, Mr	Kumagai Co., Ltd.
	IMAMURA, Ryuji, Mr	SC Machinery Corporation
	NAKAMURA, Toshio, Mr	Obayashi Corp.
	KIKUCHI, Yuichi, Mr	Prosta Ltd.
	MATSUDA, Kazuo, Mr	Komatsu Ltd.
	SUNAMURA, Kazuhiro, Mr	Hitachi Construction Machinery Co., Ltd.
	SUYAMA, Hiroaki, Mr	Shin Caterpiller Mitsubishi Ltd.

Reviewing Committee (Domestic Standardization Committee)

	FUJIMOTO, Satoshi, Mr	Kobelco Construction Machinery Co., Ltd.
	MOTOHASHI, Yutaka, Mr	Sumitomo Construction Machinery Co., Ltd.
	AKIMOTO, Toshihiko, Mr	Sakai Heavy Industries, Ltd.
	OOMURA, Takayoshi, Mr	Furnace Engineering Inc.
Secretary	WATANABE, Tadashi, Mr	Japan Construction Machinery and Construction Association
	NISHIWAKI, Tetsuo, Mr	Japan Construction Machinery and Construction Association
	ABE, Yutaka, Mr	Japan Construction Machinery and Construction Association

Drafting Committee (Fuels & Lubricants Subcommittee – Task Force on Biodegradable Hydraulic Fluids for Construction Machinery)

Responsibility	Name	Organization
Chairman	OHKAWA, Satoshi, Mr	Komatsu Ltd.
Member	SENOO, Tsunejiryo, Mr	Kubota Corp.
	IIZUKA, Takehiko, Mr	Gikenseisakusho, Co., Ltd.
	TOUJI, Hiroshi, Mr	Kobelco Construction Machinery Co., Ltd.
	OGURA, Kimihiko, Mr	Shin Caterpillar Mitsubishi Ltd.
	ISHIYAMA, Hiroshi, Mr	Sumitomo Construction Machinery Co., Ltd.
	SUGIYAMA, Genroku , Mr	Hitachi Construction Machinery Co., Ltd.
	MATSUYAMA, Yuuichi, Mr	Idemitsu Kosan Co., Ltd.
	OZAKI, Takahiro, Mr	Showa Shell Sekiyu K.K
	MITSUMOTO, Shin-ichi, Mr	Nippon Oil Corporation
	MOCHIZUKI, Akihiro, Mr	ChevronTexaco Japan Co., Ltd.
Observer	SATOU, Ryuuzou	Kyodo Yushi Co., Ltd.
	TAKEUCHI, Kiyoshi, Mr	Kyodo Yushi Co., Ltd.
	NAKAMURA, Minoru, Mr	Nippom Koyu Ltd.
	NISHIMUEA, Hiroshi, Mr	Nippom Koyu Ltd.
	NISHISHINA, Hironori, Mr	NOK Corp.
	HASEGAWA, Hirohito, Mr	Lubrizol Japan Ltd
Secretarry	MIYAGUCHI, Masao, Mr	Japan Construction Machinery and Construction Association